Skip to main content
Log in

Optimal Distributed Control of a Generalized Fractional Cahn–Hilliard System

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” by the same authors, general well-posedness results have been established for a class of evolutionary systems of two equations having the structure of a viscous Cahn–Hilliard system, in which nonlinearities of double-well type occur. The operators appearing in the system equations are fractional versions in the spectral sense of general linear operators  AB  having compact resolvents, which are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. In this work we complement the results given in the quoted paper by studying a distributed control problem for this evolutionary system. The main difficulty in the analysis is to establish a rigorous Fréchet differentiability result for the associated control-to-state mapping. This seems only to be possible if the state stays bounded, which, in turn, makes it necessary to postulate an additional global boundedness assumption. One typical situation, in which this assumption is satisfied, arises when B is the negative Laplacian with zero Dirichlet boundary conditions and the nonlinearity is smooth with polynomial growth of at most order four. Also a case with logarithmic nonlinearity can be handled. Under the global boundedness assumption, we establish existence and first-order necessary optimality conditions for the optimal control problem in terms of a variational inequality and the associated adjoint state system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H., Bosia, S., Grasselli, M.: Cahn–Hilliard equation with nonlocal singular free energies. Ann. Mat. Pura Appl. 194, 1071–1106 (2015)

    Article  MathSciNet  Google Scholar 

  2. Ainsworth, M., Mao, Z.: Analysis and approximation of a fractional Cahn–Hilliard equation. SIAM J. Numer. Anal. 55, 1689–1718 (2017)

    Article  MathSciNet  Google Scholar 

  3. Akagi, G., Schimperna, G., Segatti, A.: Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations. J. Differ. Equ. 261, 2935–2985 (2016)

    Article  MathSciNet  Google Scholar 

  4. Antil, H., Otárola, E.: A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53, 3432–3456 (2015)

    Article  MathSciNet  Google Scholar 

  5. Antil, H., Otárola, E.: An a posteriori error analysis for an optimal control problem involving the fractional Laplacian. IMA J. Numer. Anal. 38, 198–226 (2018)

    Article  MathSciNet  Google Scholar 

  6. Antil, H., Otárola, E., Salgado, A.J.: A space-time fractional optimal control problem: analysis and discretization. SIAM J. Control Optim. 54, 1295–1328 (2016)

    Article  MathSciNet  Google Scholar 

  7. Barbu, V.: Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer, London, New York (2010)

    Book  Google Scholar 

  8. Bonforte, M., Figalli, A., Vázquez, J.L.: Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations. Preprint arXiv:1710.02731 [math.AP] 1–35 (2017)

  9. Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, vol. 5. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  10. Colli, P., Sprekels, J.: Optimal boundary control of a nonstandard Cahn–Hilliard system with dynamic boundary condition and double obstacle inclusions. In: Colli, P., Favini, A., Rocca, E., Schimperna, G., Sprekels, J. (eds.) Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs. Springer INdAM Series, vol. 22, pp. 151–182. Springer, Cham (2017)

    Chapter  Google Scholar 

  11. Colli, P., Farshbaf-Shaker, M.H., Gilardi, G., Sprekels, J.: Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials. SIAM J. Control Optim. 53, 2696–2721 (2015)

    Article  MathSciNet  Google Scholar 

  12. Colli, P., Farshbaf-Shaker, M.H., Gilardi, G., Sprekels, J.: Second-order analysis of a boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions. Ann. Acad. Rom. Sci. Ser. Math. Appl. 7, 41–66 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Colli, P., Farshbaf-Shaker, M.H., Sprekels, J.: A deep quench approach to the optimal control of an Allen–Cahn equation with dynamic boundary conditions and double obstacles. Appl. Math. Optim. 71, 1–24 (2015)

    Article  MathSciNet  Google Scholar 

  14. Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions. Adv. Nonlinear Anal. 4, 311–325 (2015)

    Article  MathSciNet  Google Scholar 

  15. Colli, P., Gilardi, G., Sprekels, J.: Distributed optimal control of a nonstandard nonlocal phase field system. AIMS Math. 1, 246–281 (2016)

    Article  Google Scholar 

  16. Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions. Appl. Math. Optim. 72, 195–225 (2016)

    Article  MathSciNet  Google Scholar 

  17. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity 30, 2518–2546 (2017)

    Article  MathSciNet  Google Scholar 

  18. Colli, P., Gilardi, G., Sprekels, J.: Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential. Evol. Equ. Control Theory 6, 35–58 (2017)

    Article  MathSciNet  Google Scholar 

  19. Colli, P., Gilardi, G., Sprekels, J.: Optimal velocity control of a convective Cahn–Hilliard system with double obstacles and dynamic boundary conditions: a ‘deep quench’ approach. To appear in J. Convex Anal. 26 (2019) (see also Preprint arXiv:1709.03892 [math. AP] (2017), pp. 1–30)

  20. Colli, P., Gilardi, G., Sprekels, J.: On a Cahn–Hilliard system with convection and dynamic boundary conditions. Ann. Mat. Pura Appl. https://doi.org/10.1007/s10231-018-0732-1 (2018)

  21. Colli, P., Gilardi, G., Sprekels, J.: Optimal velocity control of a viscous Cahn–Hilliard system with convection and dynamic boundary conditions. SIAM J. Control Optim. 56, 1665–1691 (2018)

    Article  MathSciNet  Google Scholar 

  22. Colli, P., Gilardi, G., Sprekels, J.: Well-posedness and regularity for a generalized fractional Cahn–Hilliard system. Preprint arXiv:1804.11290 [math. AP] , pp. 1–36 (2018)

  23. Duan, N., Zhao, X.: Optimal control for the multi-dimensional viscous Cahn–Hilliard equation. Electron. J. Differ. Equ., Paper No. 165 (2015)

  24. Frigeri, S., Gal, C.G., Grasselli, M.: On nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions. J. Nonlinear Sci. 26, 847–893 (2016)

    Article  MathSciNet  Google Scholar 

  25. Frigeri, S., Gal, C.G., Grasselli, M., Sprekels, J.: Two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with variable viscosity, degenerate mobility and singular potential. To appear in Nonlinearity (see also WIAS Preprint Series No. 2309, Berlin, pp. 1–56 (2016))

  26. Frigeri, S., Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal Cahn–Hilliard/Navier–Stokes system in two dimensions. SIAM J. Control Optim. 54, 221–250 (2016)

    Article  MathSciNet  Google Scholar 

  27. Frigeri, S., Grasselli, M., Sprekels, J.: Optimal distributed control of two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with degenerate mobility and singular potential. Appl. Math. Optim. https://doi.org/10.1007/s00245-018-9524-7 (2018)

  28. Fukao, T., Yamazaki, N.: A boundary control problem for the equation and dynamic boundary condition of Cahn–Hilliard type. In: Colli, P., Favini, A., Rocca, E., Schimperna, G., Sprekels, J. (eds.) Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs. Springer INdAM Series, vol. 22, pp. 255–280. Springer, Cham (2017)

    Chapter  Google Scholar 

  29. Gal, C.G.: On the strong-to-strong interaction case for doubly nonlocal Cahn–Hilliard equations. Discret. Contin. Dyn. Syst. 37, 131–167 (2017)

    Article  MathSciNet  Google Scholar 

  30. Gal, C.G.: Non-local Cahn–Hilliard equations with fractional dynamic boundary conditions. Eur. J. Appl. Math. 28, 736–788 (2017)

    Article  MathSciNet  Google Scholar 

  31. Gal, C.G.: Doubly nonlocal Cahn–Hilliard equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 357–392 (2018)

    Article  MathSciNet  Google Scholar 

  32. Geldhauser, C., Valdinoci, E.: Optimizing the fractional power in a model with stochastic PDE constraints. Preprint arXiv:1703.09329v1 [math.AP], pp. 1–18 (2017)

  33. Hintermüller, M., Wegner, D.: Distributed optimal control of the Cahn–Hilliard system including the case of a double-obstacle homogeneous free energy density. SIAM J. Control Optim. 50, 388–418 (2012)

    Article  MathSciNet  Google Scholar 

  34. Hintermüller, M., Wegner, D.: Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system. SIAM J. Control Optim. 52, 747–772 (2014)

    Article  MathSciNet  Google Scholar 

  35. Hintermüller, M., Wegner, D.: Distributed and boundary control problems for the semidiscrete Cahn–Hilliard/Navier–Stokes system with nonsmooth Ginzburg–Landau energies. In: Bergounioux, M., Oudet, E., Rumpf, M., Carlier, G., Champion, T., Santambrogio, F. (eds.) Topological Optimization and Optimal Transport. Radon Series on Computational and Applied Mathematics, vol. 17, pp. 40–63. De Gruyter, Berlin (2017)

    MATH  Google Scholar 

  36. Hintermüller, M., Hinze, M., Kahle, C., Keil, T.: A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn–Hilliard–Navier–Stokes system. WIAS Preprint Series No. 2311, Berlin, pp. 1–27 (2016)

  37. Hintermüller, M., Keil, T., Wegner, D.: Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system with non-matched fluid densities. SIAM J. Control Optim. 55, 1954–1989 (2018)

    Article  Google Scholar 

  38. Jerome, J.W.: Approximation of Nonlinear Evolution Systems. Mathematics in Science and Engineering, vol. 164. Academic Press, Orlando (1983)

    MATH  Google Scholar 

  39. Lions, J.L.: Équations Différentielles Opérationnelles et Problèmes aux Limites. Grundlehren, vol. 111. Springer, Berlin (1961)

    MATH  Google Scholar 

  40. Medjo, T.T.: Optimal control of a Cahn–Hilliard–Navier–Stokes model with state constraints. J. Convex Anal. 22, 1135–1172 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Miranville, A., Zelik, S.: Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27, 545–582 (2004)

    Article  MathSciNet  Google Scholar 

  42. Pellacci, B., Verzini, G.: Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems. J. Math. Biol. 76, 1357–1386 (2018)

    Article  MathSciNet  Google Scholar 

  43. Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal convective Cahn–Hilliard equation by the velocity in three dimensions. SIAM J. Control Optim. 53, 1654–1680 (2015)

    Article  MathSciNet  Google Scholar 

  44. Simon, J.: Compact sets in the space \(L^p(0, T; B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  45. Sprekels, J., Valdinoci, E.: A new class of identification problems: optimizing the fractional order in a nonlocal evolution equation. SIAM J. Control Optim. 55, 70–93 (2017)

    Article  MathSciNet  Google Scholar 

  46. Wang, Q.-F., Nakagiri, S.-i.: Weak solutions of Cahn–Hilliard equations having forcing terms and optimal control problems. Mathematical models in functional equations (Japanese) (Kyoto, 1999), Sūrikaisekikenkyūsho Kōkyūroku No. 1128, 172–180 (2000)

  47. Zhao, X.P., Liu, C.C.: Optimal control of the convective Cahn–Hilliard equation. Appl. Anal. 92, 1028–1045 (2013)

    Article  MathSciNet  Google Scholar 

  48. Zhao, X.P., Liu, C.C.: Optimal control of the convective Cahn–Hilliard equation in 2D case. Appl. Math. Optim. 70, 61–82 (2014)

    Article  MathSciNet  Google Scholar 

  49. Zheng, J.: Time optimal controls of the Cahn–Hilliard equation with internal control. Optim. Control Appl. Methods 36, 566–582 (2015)

    Article  MathSciNet  Google Scholar 

  50. Zheng, J., Wang, Y.: Optimal control problem for Cahn–Hilliard equations with state constraint. J. Dyn. Control Syst. 21, 257–272 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Italian Ministry of Education, University and Research (MIUR): Dipartimenti di Eccellenza Program (2018–2022) – Dept. of Mathematics “F. Casorati”, University of Pavia. In addition, PC and CG gratefully acknowledge some other financial support from the MIUR-PRIN Grant 2015PA5MP7 “Calculus of Variations”, the GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) and the IMATI – C.N.R. Pavia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Colli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colli, P., Gilardi, G. & Sprekels, J. Optimal Distributed Control of a Generalized Fractional Cahn–Hilliard System. Appl Math Optim 82, 551–589 (2020). https://doi.org/10.1007/s00245-018-9540-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9540-7

Keywords

Mathematics Subject Classification

Navigation