Skip to main content
Log in

Extensions of the Standard Quadratic Optimization Problem: Strong Duality, Optimality, Hidden Convexity and S-lemma

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

Many formulations of quadratic allocation problems, portfolio optimization problems, the maximum weight clique problem, among others, take the form as the well-known standard quadratic optimization problem, which consists in minimizing a homogeneous quadratic function on the usual simplex in the non negative orthant. We propose to analyze the same problem when the simplex is substituted by a convex and compact base of any pointed, closed, convex cone (so, the cone of positive semidefinite matrices or the cone of copositive matrices are particular instances). Three main duals (for which a semi-infinite formulation of the primal problem is required) are associated, and we establish some characterizations of strong duality with respect to each of the three duals in terms of copositivity of the Hessian of the quadratic objective function on suitable cones. Such a problem reveals a hidden convexity and the validity of S-lemma. In case of bidimensional quadratic optimization problems, copositivity of the Hessian of the objective function is characterized, and the case when every local solution is global.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, F., Dür, M., Still, G.: Copositive programming via semi-infinite optimization. J. Optim. Theory Appl. 159, 322–340 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  3. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming, Theory and Algorithms. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  4. Beck, A.: On the convexity of a class of quadratic mappings and its application to the problem of finding the smallest ball enclosing a given intersection of balls. J. Glob. Optim. 39, 113–126 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Best, M.J., Ding, B.: Global and local quadratic minimization. J. Glob. Optim. 10, 77–90 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Bomze, I.M.: Global escape strategies for maximizing quadratic forms over a simplex. J. Glob. Optim. 11, 325–338 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Bomze, I.M.: On standard quadratic optimization problems. J. Glob. Optim. 13, 369–387 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Bomze, I.M.: Copositivity relaxation beats Lagrangian dual bounds in quadratically and linearly constrained quadratic optimization problems. SIAM J. Optim. 25, 1249–1275 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Bomze, I.M.: Copositivity for second-order optimality conditions in general smooth optimization problems. Optimization 65, 779–795 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Glob. Optim. 24, 163–185 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Bomze, I.M., Dür, M., de Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Bomze, I.M., Locatelli, M., Tardella, F.: New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability. Math. Program. A 115, 31–64 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Burer, S.: A gentle-geometric introduction to copositive optimization. Math. Program. B 151, 89–116 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Cárcamo, G., Flores-Bazán, F.: Strong duality and KKT conditions in nonconvex optimization with a single equality constraint and geometric constraint. Math. Program. B 168, 369–400 (2018)

    MathSciNet  MATH  Google Scholar 

  15. de Klerk, E., Pasechnik, D.V.: A linear programming reformulation of the standard quadratic optimization problem. J. Glob. Optim. 24, 75–84 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Dickinson, P.J.C.: An improved characterisation of the interior of the completely positive cone. Electron. J. Linear Algebra 20, 723–729 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Dines, L.L.: On the mapping of quadratic forms. Bull. Am. Math. Soc. 47, 494–498 (1941)

    MathSciNet  MATH  Google Scholar 

  18. Dinh, N., Goberna, M.A., Lopez, M.A., Son, T.Q.: New Farkas-type constraint qualifications in convex infinite programming. ESAIM 13, 580–597 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Dür, M., Still, G.: Interior points of the completely positive cone. Electron. J. Linear Algebra 17, 48–53 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Eichfelder, G., Jahn, J.: Set-semidefinite optimization. J. Convex Anal. 15, 767–801 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Flores-Bazán, F., Echegaray, W., Flores-Bazán, F., Ocaña, E.: Primal or dual strong-duality in non convex optimization and a class of quasiconvex problems having zero duality gap. J. Glob. Optim. 69, 823–845 (2017)

    MATH  Google Scholar 

  22. Flores-Bazán, F., Jourani, A., Mastroeni, G.: On the convexity of the value function for a class of nonconvex variational problems: existence and optimality conditions. SIAM J. Control. Optim. 52, 3673–3693 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Flores-Bazán, F., Mastroeni, G.: Strong duality in cone constrained nonconvex optimization. SIAM J. Optim. 23(1), 153–169 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Flores-Bazán, F., Opazo, F.: Characterizing the convexity of joint-range for a pair of inhomogeneous quadratic functions and strong duality. Minimax Theory Appl. 1, 257–290 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Gaddum, J.W.: Linear inequalities and quadratic forms. Pac. J. Math. 8, 411–414 (1958)

    MathSciNet  MATH  Google Scholar 

  26. Gibbons, L.E., Hearn, D.W., Pardalos, P.M., Ramana, M.V.: Continuous characterizations of the maximum clique problem. Math. Oper. Res. 22, 754–768 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Hadeler, K.P.: On copositive matrices. Linear Algebra Appl. 49, 79–89 (1983)

    MathSciNet  MATH  Google Scholar 

  28. Hiriart-Urruty, J.B., Torki, M.: Permanently going back and forth between “quadratic world” and the “convexity world” in optimization. Appl. Math. Optim. 45, 169–184 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Ibaraki, T., Katoh, N.: Resource Allocations Problems: Algorithm Approaches. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  30. Jeyakumar, V., Lee, G.M., Li, G.Y.: Alternative theorems for quadratic inequality systems and global quadratic optimization. SIAM J. Optim. 20, 983–1001 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Jeyakumar, V., Wolkowicz, H.: Zero duality gaps in infinite-dimensional programming. J. Optim. Theory Appl. 67, 87–108 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Jeyakumar, V., Li, G.Y.: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimzation. Math. Program. A 147, 171–206 (2014)

    MATH  Google Scholar 

  33. Markowitz, H.M.: Portfolio selection. J. Financ. 7, 77–91 (1952)

    Google Scholar 

  34. Markowitz, H.M.: The general mean-variance portfolio selection problem. In: Howison, S.D., et al. (eds.) Mathematical Models in Finance, pp. 93–99. Chapman & Hall, London (1995)

    Google Scholar 

  35. Mastroeni, G.: Some applications of the image space analysis to the duality theory for constrained extremum problems. J. Global Optim. 46, 603–614 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Motzkin, T.S., Strauss, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Can. J. Math. 17, 533–540 (1965)

    MATH  Google Scholar 

  37. Ping, L., Yu, F.Y.: Criteria for copositive matrices of order four. Linear Algebra Appl. 194, 109–124 (1993)

    MathSciNet  MATH  Google Scholar 

  38. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49, 371–418 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  40. Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)

    MATH  Google Scholar 

  41. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28, 246–267 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Xia, Y., Wang, S., Sheu, R.L.: S-lemma with equality and its applications. Math. Prog. Ser. A 156, 513–547 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Yakubovich, V.A.: S-procedure in nonlinear control theory. Vestn. Leningr. Univ. 1, 62–77 (1971). (in Russian)

    MathSciNet  MATH  Google Scholar 

  44. Yakubovich, V.A.: S-procedure in nonlinear control theory. Vestn. Leningr. Univ. 4, 73–93 (1977). (English translation)

    Google Scholar 

Download references

Acknowledgements

The authors want to express their gratitud to both referees for the valuable suggestion and comments which led to the present version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabián Flores-Bazán.

Additional information

The research for the first author was supported in part by CONICYT-Chile through FONDECYT 1181316, and PIA/Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal AFB170001. Support by the Programa Regional MATHAMSUD, 17MATH-06 is greatly acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Bazán, F., Cárcamo, G. & Caro, S. Extensions of the Standard Quadratic Optimization Problem: Strong Duality, Optimality, Hidden Convexity and S-lemma. Appl Math Optim 81, 383–408 (2020). https://doi.org/10.1007/s00245-018-9502-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9502-0

Keywords

Mathematics Subject Classification

Navigation