Skip to main content
Log in

Nonlinear Nonhomogeneous Boundary Value Problems with Competition Phenomena

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We consider a nonlinear boundary value problem driven by a nonhomogeneous differential operator. The problem exhibits competing nonlinearities with a superlinear (convex) contribution coming from the reaction term and a sublinear (concave) contribution coming from the parametric boundary (source) term. We show that for all small parameter values \(\lambda >0\), the problem has at least five nontrivial smooth solutions, four of constant sign and one nodal. We also produce extremal constant sign solutions and determine their monotonicity and continuity properties as the parameter \(\lambda >0\) varies. In the semilinear case we produce a sixth nontrivial solution but without any sign information. Our approach uses variational methods together with truncation and perturbation techniques, and Morse theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints. Memoirs Am. Math. Soc. 196(905), 70 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benci, V., D’Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154, 297–324 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, K.C.: Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  6. Cherfils, L., Ilyasov, Y.: On the stationary solutions of generalized reaction diffusion equations with p&q Laplacian. Commun. Pure Appl. Anal. 4, 9–22 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Cingolani, S., Degiovanni, M.: Nontrivial solutions for \(p\)-Laplace equations with right-hand side having \(p\)-linear growth at infinity. Commun. Partial Differ. Equ. 30, 1191–1203 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corvellec, J.N., Hantoute, A.: Homotopical stability of isolated critical points of continuous functionals. Set Valued Anal. 10, 143–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diaz, J.I., Saa, J.E.: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I(305), 521–524 (1987)

    MATH  Google Scholar 

  10. Filippakis, M., Papageorgiou, N.S.: Multiple constant sign and nodal solutions for nonlinear elliptic equations with the \(p\)-Laplacian. J. Differ. Equ. 245, 1883–1922 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Furtado, M., Ruviaro, R.: Multiple solutions for a semilinear problem with combined terms and nonlinear boundary conditions. Nonlinear Anal. 74, 4820–4830 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garcia-Azorero, J., Peral, I., Rossi, J.D.: A convex-concave problem with a nonlinear boundary condition. J. Differ. Equ. 198, 91–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gasinski, L., Papageorgiou, N.S.: Nonlinear Analysis. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  14. Gasinski, L., Papageorgiou, N.S.: Existence and multiplicity of solutions for Neumann \(p\)-Laplacian type equations. Adv. Nonlinear Stud. 8, 243–270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gasinski, L., Papageorgiou, N.S.: A pair of positive solutions for \((p, q)\)-equations with combined nonlinearities. Commun. Pure Appl. Anal. 13, 203–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gasinski, L., Papageorgiou, N.S.: Exercises in Analysis. Part 2: Nonlinear Analysis. Springer, New York (2016)

    Book  MATH  Google Scholar 

  17. Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13, 879–902 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Volume I: Theory. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  19. Hu, S., Papageorgiou, N.S.: Nonlinear Neumann problems with indefinite potential and concave terms. Commun. Pure Appl. Anal. 14, 2561–2616 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, S., Papageorgiou, N.S.: Elliptic equations with indefinite and unbounded potential and a nonlinear concave boundary condition. Commun. Contemp. Math. 19(1), 1550090 (2017)

  21. Lieberman, G.: The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations. Commun. Partial Differ. Equ. 16, 311–361 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marano, S., Mosconi, S., Papageorgiou, N.S.: Multiple solutions to \((p, q)\)-Laplacian problems with resonant concave nonlinearity. Adv. Nonlinear Stud. 16, 51–65 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Motreanu, D., Motreanu, V., Papageorgiou, N.S.: Topological and Variational Methods with Applications to Boundary Value Problems. Springer, New York (2014)

    Book  MATH  Google Scholar 

  24. Mugnai, D., Papageorgiou, N.S.: Wang’s multiplicity result for superlinear \((p, q)\)-equations without the Ambrosetti-Rabinowitz condition. Trans. Am. Math. Soc. 366, 4919–4937 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Palais, R.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1–16 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  26. Papageorgiou, N.S., Rădulescu, V.D.: Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance. Appl. Math. Optim. 69, 393–430 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Papageorgiou, N.S., Rădulescu, V.D.: Multiple solutions with precise sign for nonlinear parametric Robin problems. J. Differ. Equ. 256, 2449–2479 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Papageorgiou, N.S., Rădulescu, V.D.: Resonant \((p, 2)\)-equations with asymmetric reaction. Anal. Appl. (Singap.) 13, 481–506 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Papageorgiou, N.S., Rădulescu, V.D.: Coercive and noncoercive nonlinear Neumann problems with indefinite potential. Forum Math. 28, 545–571 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Papageorgiou, N.S., Rădulescu, V.D.: Nonlinear nonhomogeneous Robin problems with superlinear reaction term. Adv. Nonlinear Stud. 16, 737–764 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: On a class of parametric \((p,2)\)-equations. Appl. Math. Optim. 75, 193–228 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Papageorgiou, N.S., Winkert, P.: Resonant \((p,2)\)-equations with concave terms. Appl. Anal. 94, 342–360 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pucci, P., Serrin, J.: The Maximum Principle. Birkhäuser, Basel (2007)

    Book  MATH  Google Scholar 

  34. Sun, M.: Multiplicity of solutions for a class of quasilinear elliptic equations at resonance. J. Math. Anal. Appl. 386, 661–668 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, M., Zhang, M., Su, J.: Critical groups at zero and multiple solutions for a quasilinear elliptic equation. J. Math. Anal. Appl. 428, 696–712 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the two knowledgeable referees for their comments, remarks and constructive criticism. This research was supported by the Slovenian Research Agency Grants P1-0292, J1-8131, J1-7025, and N1-0064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenţiu D. Rădulescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papageorgiou, N.S., Rădulescu, V.D. & Repovš, D.D. Nonlinear Nonhomogeneous Boundary Value Problems with Competition Phenomena. Appl Math Optim 80, 251–298 (2019). https://doi.org/10.1007/s00245-017-9465-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9465-6

Keywords

Mathematics Subject Classification

Navigation