Skip to main content
Log in

Mean-Variance Hedging on Uncertain Time Horizon in a Market with a Jump

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this work, we study the problem of mean-variance hedging with a random horizon Tτ, where T is a deterministic constant and τ is a jump time of the underlying asset price process. We first formulate this problem as a stochastic control problem and relate it to a system of BSDEs with a jump. We then provide a verification theorem which gives the optimal strategy for the mean-variance hedging using the solution of the previous system of BSDEs. Finally, we prove that this system of BSDEs admits a solution via a decomposition approach coming from filtration enlargement theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As commonly done for the integration w.r.t. jump processes, the integral \(\int_{a}^{b}\) stands for ∫(a,b].

  2. The notation BSDE (f,H) holds for the BSDE with generator f and terminal condition H.

References

  1. Arai, T.: An extension of mean-variance hedging to the discontinuous case. Finance Stoch. 9, 129–139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barles, G., Buckdahn, R., Pardoux, E.: Backward Stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep. 60(1–2), 57–83 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Delbaen, F., Schachermayer, W.: The variance-optimal martingale measure for continuous processes. Bernoulli 2, 81–105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. El Karoui, N., Peng, S., Quenez, M.-C.: Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Émery, M.: Équations différentielles stochastiques lipschitziennes: étude de la stabilité. Sém. Prob. (Strasbourg) 13, 281–293 (1979)

    Google Scholar 

  6. Gouriéroux, C., Laurent, J.-P., Pham, H.: Mean-variance Hedging and numéraire. Math. Finance 8, 179–200 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, S., Wang, J., Yan, J.: Semimartingale Theory and Stochastic Calculus. Science Press/CRC Press, New-York (1992)

    MATH  Google Scholar 

  8. Hu, Y., Imkeller, P., Muller, M.: Utility maximization in incomplete markets. Ann. Probab. 15, 1691–1712 (2004)

    Article  MathSciNet  Google Scholar 

  9. Jeanblanc, M., Mania, M., Santacroce, M., Schweizer, M.: Mean-variance hedging via stochastic control and BSDES for general semimartingales. Ann. Appl. Probab. 22(6), 2388–2428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jeulin, T.: Semimartingales et Grossissements D’une Filtration. Lecture Notes in Mathematics, vol. 833. Springer, Berlin (1980)

    Google Scholar 

  11. Jeulin, T., Yor, M.: Grossissement de Filtration: Exemples et Applications. Lecture Notes in Mathematics, vol. 1118. Springer, Berlin (1985)

    Book  Google Scholar 

  12. Kazamaki, N.: Continuous Martingales and BMO. Lectures Notes in Mathematics, vol. 1579. Springer, Berlin (1994)

    MATH  Google Scholar 

  13. Kobylanski, M.: Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28, 558–602 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lim, A.E.B.: Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market. Math. Oper. Res. 29, 132–161 (2002)

    Article  Google Scholar 

  15. Lim, A.-E.-B., Zhou, X.-Y.: Mean-variance portfolio selection with random parameters in a complete market. Math. Oper. Res. 27, 101–120 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lim, A.-E.-B.: Mean-variance hedging when there are jumps. SIAM J. Control Optim. 44, 1893–1922 (2006)

    Article  MATH  Google Scholar 

  17. Laurent, J.-P., Pham, H.: Dynamic programming and mean-variance hedging. Finance Stoch. 3, 83–110 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schweizer, M.: Approximation pricing and the variance-optimal martingale measure. Ann. Probab. 64, 206–236 (1996)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of I.K. benefited from the support of the French ANR research grant LIQUIRISK (ANR-11-JS01-0007).

The research of T.L. benefited from the support of the “Chaire Risque de Crédit”, Fédération Bancaire Française.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idris Kharroubi.

Appendix

Appendix

1.1 A.1 Proof of Proposition 2.1

We first suppose that X is a nonnegative \(\mathcal{P}(\mathbb {G})\)-measurable process. For n≥1, we define the process X n by

$$\begin{aligned} X^n_t = & X_t\wedge n ,\quad t\in[0,T] . \end{aligned}$$

Then X n is a bounded \(\mathbb{G}\)-predictable process, and from Lemma 4.4 in [10], there exist a \(\mathcal{P}(\mathbb{F})\)-measurable process X n,b and a \(\mathcal{P}(\mathbb{F})\otimes\mathcal{B}(\mathbb{R}_{+})\)-measurable process X n,a such that

(A.1)

Since the sequence (X n) n is nondecreasing, we can assume w.l.o.g. that the sequences (X a,n) n and (X b,n) n are also nondecreasing. Define the processes X a and X b by

$$X^a = \lim_{n\rightarrow\infty} X^{n,a} \quad \mbox{and}\quad X^b = \lim_{n\rightarrow\infty} X^{n,b} . $$

Then X a is \(\mathcal{P}(\mathbb{F})\otimes\mathcal{B}(\mathbb {R}_{+})\)-measurable and X b is \(\mathcal{P}(\mathbb{F})\)-measurable and sending n to infinity in (A.1), we get

(A.2)

For a general \(\mathcal{P}(\mathbb{G})\)-measurable process X, we write X=X +X where X +=max(X,0) and X =max(−X,0) and we apply the previous result to the nonnegative processes X + and X . From the linear stability of the decomposition (A.2) we get the result.  □

1.2 A.2 BMO Stability

Theorem A.1

Let \(\mathbb{Q}_{1}\) and \(\mathbb{Q}_{2}\) be two probability measures on \((\varOmega,\mathcal{G})\). Let M and N be two continuous \((\mathbb{F},\mathbb{Q}_{1})\)-local martingales with \(N\in\rm{BMO}(\mathbb{Q}_{1})\). Suppose that \(\mathbb{Q}_{1}\) and \(\mathbb{Q}_{2}\) are equivalent with \({d\mathbb{Q}_{2}\over d\mathbb{Q}_{1}} |_{\mathcal{F}_{T}}={\mathcal{E}}(N)_{T}\). If \(M\in\rm {BMO}(\mathbb{Q}_{1})\) then \(M-\langle M,N\rangle\in\rm{BMO}(\mathbb{Q}_{2})\).

Proof

This result is a direct consequence of Theorem 3.6 in [12]. □

1.3 A.3 An Estimate for Conditional Moments

Proposition A.1

Let A be a continuous increasing \(\mathbb{F}\)-adapted process. Fix a t≥0 such that there exists a constant C>0 satisfying

$$\begin{aligned} \mathbb{E} [A_t-A_s | \mathcal{F}_s ] \leq& C , \end{aligned}$$

for any s∈[0,t]. Then, we have for any s∈[0,t] and any p≥1

$$\begin{aligned} \mathbb{E} \bigl[{|A_t-A_s|}^{p} | {\mathcal{F}}_s \bigr]\leq p! |C|^{p} \end{aligned}$$

and

$$\begin{aligned} \mathbb{E} \bigl[\exp \bigl(\delta(A_t-A_s) \bigr) \big| \mathcal {F}_s \bigr] \leq& \frac{1}{1-\delta C} , \end{aligned}$$

for any \(\delta\in(0,{1\over C})\).

Proof

Let A be a continuous increasing \(\mathbb {F}\)-adapted process satisfying \(\mathbb{E}[A_{t}-A_{s} | \mathcal{F}_{s}] \leq C\) for any s∈[0,t]. We first prove by iteration that \(\mathbb{E} [{|A_{t}-A_{s}|}^{p} | {\mathcal{F}}_{s}]\leq p! |C|^{p}\) for any p≥1.

  • For p=1, we have by assumption \(\mathbb{E}[A_{t}-A_{s} | \mathcal{F}_{s}] \leq C\).

  • Suppose that for some p≥2, we have \(\mathbb{E}[{|A_{t}-A_{s}|}^{p-1} | {\mathcal{F}}_{s}]\leq(p-1)! |C|^{p-1}\). Since A is a continuous increasing \(\mathbb{F}\)-adapted process we have

    $$\begin{aligned} {|A_t-A_s|}^{p}=p \int_s^t {|A_t-A_u|}^{p-1} dA_u , \end{aligned}$$

    for any s∈[0,t]. Consequently we get

    $$\begin{aligned} \mathbb{E} \bigl[|A_t-A_s|^{p} | \mathcal{F}_s \bigr] = & p \mathbb{E} \biggl[ \int_s^t |A_t-A_u|^{p-1}dA_u \bigg| \mathcal{F}_s \biggr] \\ = & p \mathbb{E} \biggl[ \int_s^t \mathbb{E} \bigl[|A_t-A_u|^{p-1} | \mathcal{F}_u \bigr] dA_u \bigg| \mathcal{F}_s \biggr] \\ \leq& p! |C|^{p-1} \mathbb{E}[ A_t - A_s |\mathcal{F}_s] \\ \leq& p! |C|^p . \end{aligned}$$
  • Since the result holds true for p=1 and for any p≥2 as soon as it holds for p−1, it holds for p, we get

    $$\begin{aligned} \mathbb{E} \bigl[{|A_t-A_s |}^{p} | { \mathcal{F}}_s\bigr]\leq p! |C|^{p} , \end{aligned}$$

    for any p≥1.

From this last inequality, we get for any \(\delta\in(0, \frac{1}{C})\)

$$\begin{aligned} \mathbb{E} \biggl[\sum_{p\geq0}{1\over p!}| \delta|^p {|A_t-A_s|}^p \bigg| \mathcal {F}_s \biggr] \leq& \sum_{p\geq0} |\delta C|^p = {1\over1-\delta C} , \end{aligned}$$

which is the expected result. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharroubi, I., Lim, T. & Ngoupeyou, A. Mean-Variance Hedging on Uncertain Time Horizon in a Market with a Jump. Appl Math Optim 68, 413–444 (2013). https://doi.org/10.1007/s00245-013-9213-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-013-9213-5

Keywords

Navigation