Skip to main content
Log in

Image Restoration and Decomposition via Bounded Total Variation and Negative Hilbert-Sobolev Spaces

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

We propose a new class of models for image restoration and decomposition by functional minimization. Following ideas of Y. Meyer in a total variation minimization framework of L. Rudin, S. Osher, and E. Fatemi, our model decomposes a given (degraded or textured) image u 0 into a sum u+v. Here uBV is a function of bounded variation (a cartoon component), while the noisy (or textured) component v is modeled by tempered distributions belonging to the negative Hilbert-Sobolev space H s. The proposed models can be seen as generalizations of a model proposed by S. Osher, A. Solé, L. Vese and have been also motivated by D. Mumford and B. Gidas. We present existence, uniqueness and two characterizations of minimizers using duality and the notion of convex functions of measures with linear growth, following I. Ekeland and R. Temam, F. Demengel and R. Temam. We also give a numerical algorithm for solving the minimization problem, and we present numerical results of denoising, deblurring, and decompositions of both synthetic and real images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods of ill-posed problems. Inverse Probl. 10, 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alvarez, L., Gousseau, Y., Morel, J.M.: Scales in natural images and a consequence on their bounded variation norm. In: Lecture Notes in Computer Science, vol. 1682, pp. 247–258. Springer, London (1999)

    Google Scholar 

  3. Andreu-Vaillo, F., Ballester, C., Caselles, V., Mazon, J.M.: Minimizing total variation flow. C. R. Acad. Sci. Paris Sér. I Math. 331, 867–872 (2000)

    MathSciNet  Google Scholar 

  4. Andreu-Vaillo, F., Caselles, V., Mazon, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Birkhauser, Basel (2004)

    MATH  Google Scholar 

  5. Aubert, G., Aujol, J.-F.: Modeling very oscillating signals. Application to image processing. AMO 51(2), 163–182 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Aubert, G., Vese, L.: A variational method in image recovery. SIAM J. Numer. Anal. 34(5), 1948–1979 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aujol, J.-F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition application to SAR images. In: Lecture Notes in Computer Science, vol. 2695, pp. 297–312. Springer, London (2003)

    Google Scholar 

  8. Aujol, J.-F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22(1), 71–88 (2005)

    Article  Google Scholar 

  9. Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63(1), 85–104 (2005)

    Article  MathSciNet  Google Scholar 

  10. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Daubechies, I., Teschke, G.: Wavelet-based image decompositions by variational functionals. In: Truchetet, F. (ed.) Wavelet Applications in Industrial Processing. Proc. SPIE, vol. 5266, pp. 94–105 (2004)

  12. Daubechies, I., Teschke, G.: Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising. Appl. Comput. Harmon. Anal. 19(1), 1–16 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 2. Springer, Berlin (1988)

    Google Scholar 

  14. Demengel, F., Temam, R.: Convex functions of a measure and applications. Indiana Univ. Math. J. 33(5), 673–709 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Am. Elsevier, New York (1976)

    MATH  Google Scholar 

  16. Esedoglu, S., Osher, S.J.: Decomposition of images by the anisotropic Rudin-Osher-Fatemi model. Commun. Pure Appl. Math. 57(12), 1609–1626 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  18. Garnett, J.B., Le, T.M., Meyer, Y., Vese, L.A.: Image decompositions using bounded variation and homogeneous Besov spaces. Appl. Comput. Harmon. Anal. 23, 25–56 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  20. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Estimation of the optimal variational parameter via SNR analysis. In: Lecture Notes in Computer Science, vol. 3459, pp. 230–241. Springer, London (2005)

    Google Scholar 

  21. Gousseau, Y., Morel, J.M.: Are natural images of bounded variation? SIAM J. Math. Anal. 33(3), 634–648 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Le, T., Vese, L.A.: Image decomposition using total variation and div(BMO). Multiscale Model. Simul. 4(2), 390–423 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Levine, S.: An adaptive variational model for image decomposition. In: Lecture Notes in Computer Science, vol. 3757, pp. 382–397. Springer, London (2005)

    Google Scholar 

  24. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. Univ. Lecture Ser., vol. 22. Am. Math. Soc., Providence (2002)

    Google Scholar 

  25. Mumford, D., Gidas, B.: Stochastic models for generic images. Q. Appl. Math. 59, 85–111 (2001)

    MATH  MathSciNet  Google Scholar 

  26. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H −1 norm. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rockafellar, P.T.: Convex Analysis. Princeton Univ. Press, Princeton (1970)

    MATH  Google Scholar 

  29. Roudenko, S.: Noise and texture detection in image processing. Preprint (2004)

  30. Rudin, L.I., Osher, S.: Total variation based image restoration with free local constraints. In: Proceedings of ICIP 1994, vol. 1, pp. 31–35 (1994)

  31. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    MATH  Google Scholar 

  32. Temam, R., Strang, G.: Functions of bounded deformation. Arch. Ration. Mech. Anal. 75(1), 7–21 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV, L2) decompositions. Multiscale Model. Simul. 2(4), 554–579 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Starck, J.-L., Elad, M., Donoho, D.L.: Image decomposition: separation of texture from Piece-Wise Smooth content. In: SPIE Annual Meeting, San Diego, California, 3–8 August 2003

  35. Vese, L.: A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Optm. 44, 131–161 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linh H. Lieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieu, L.H., Vese, L.A. Image Restoration and Decomposition via Bounded Total Variation and Negative Hilbert-Sobolev Spaces. Appl Math Optim 58, 167–193 (2008). https://doi.org/10.1007/s00245-008-9047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-008-9047-8

Keywords

Navigation