Skip to main content
Log in

Two Error Bounds for Constrained Optimization Problems and Their Applications

  • Published:
Applied Mathematics and Optimization Aims and scope Submit manuscript

Abstract

This paper presents a global error bound for the projected gradient and a local error bound for the distance from a feasible solution to the optimal solution set of a nonlinear programming problem by using some characteristic quantities such as value function, trust region radius etc., which are appeared in the trust region method. As applications of these error bounds, we obtain sufficient conditions under which a sequence of feasible solutions converges to a stationary point or to an optimal solution, respectively, and a necessary and sufficient condition under which a sequence of feasible solutions converges to a Kuhn–Tucker point. Other applications involve finite termination of a sequence of feasible solutions. For general optimization problems, when the optimal solution set is generalized non-degenerate or gives generalized weak sharp minima, we give a necessary and sufficient condition for a sequence of feasible solutions to terminate finitely at a Kuhn–Tucker point, and a  sufficient condition which guarantees that a sequence of feasible solutions terminates finitely at a stationary point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Powell, M.J.D.: Convergence properties of a class of minimization algorithms. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming 2, pp. 1–27. Academic Press, New York (1975)

    Google Scholar 

  2. Conn, A., Gould, N., Toint, P.: Trust-Region Methods. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  3. Moré, J.J.: Recent developments in algorithms and software for trust region method. In: Bachem, A., Grötchel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 258–287. Springer, Berlin (1983)

    Google Scholar 

  4. Schultz, G.A., Schnabel, R.B., Byrd, R.H.: A family of trust-region-based algorithms for unconstrained minimization with strong global convergence. SIAM J. Numer. Anal. 22, 47–67 (1985)

    Article  MathSciNet  Google Scholar 

  5. Powell, M.J.D.: On the global convergence of trust region algorithms for unconstrained optimization. Math. Program. 29, 297–303 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Byrd, R.H., Schnabel, R.B., Schultz, G.A.: Approximate solution of the trust region problem by minimization over two-dimension subspace. Math. Program. 40, 247–263 (1988)

    Article  MATH  Google Scholar 

  7. Sartenaer, A.: Automatic determination of an initial trust region in nonlinear programming. SIAM J. Sci. Comput. 18, 1788–1803 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Yuan, Y.: On the superlinear convergence of a trust region algorithms for nonsmooth optimization. Math. Program. 31, 269–285 (1985)

    Article  MATH  Google Scholar 

  9. Yuan, Y.: Conditions for convergence of trust region algorithms for nonsmooth optimization. Math. Program. 31, 220–228 (1985)

    Article  MATH  Google Scholar 

  10. Zhang, J., Zhu, D.: Projected quasi-Newton algorithm with trust region for constrained optimization. J. Optim. Theory Appl. 67, 369–393 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tseng, P.: Error bounds and superlinear convergence analysis of some newton-type methods in optimization. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Related Topics, pp. 445–462. Kluwer, Boston (2000)

    Google Scholar 

  12. Gowda, M.S., Pang, J.S.: On the boundedness and stability of solutions to the affine variational inequality problem. SIAM J. Control Optim. 32, 421–441 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ferris, M.C., Pang, J.S.: Nondegenerate solutions and related concepts in affine variational inequalities. SIAM J. Control Optim. 34, 244–263 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wu, J.H., Florian, M., Marcotte, P.: A general descent framework for the monotone variational inequality problem. Math. Program. 61, 281–300 (1993)

    Article  MathSciNet  Google Scholar 

  15. Yamashita, N., Fukushima, M.: Equivalent unconstrained framework minimization and global error bounds for variational inequality problems. SIAM J. Control Optim. 35, 273–284 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yamashita, N., Taji, K., Fukushima, M.: Unconstrained optimization reformulations of variational inequality problems. J. Optim. Theory Appl. 92, 439–456 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, J., Xiu, N.: Global s-type error bound for the extended linear complementarity problem and applications. Math. Program. 88, 391–410 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Auchmuty, G.: Variational principles for variational inequalities. Numer. Funct. Anal. Optim. 10, 863–874 (1989)

    Article  MathSciNet  Google Scholar 

  19. Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Marcotte, P., Zhu, D.: Weak sharp solutions of variational inequalities. SIAM J. Optim. 9, 179–189 (1998)

    Article  MathSciNet  Google Scholar 

  22. Wang, C.Y., Liu, Q., Yang, X.M.: Convergence properties of nonmonotone spectral projected gradient methods. J. Comput. Appl. Math. 182, 51–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Xiu, N.H., Zhang, J.Z.: Local convergence analysis of projection-type algorithms: a unified approach. J. Optim. Theory Appl. 115, 211–230 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Solodov, M.V., Tseng, P.: Some methods based on the d-gap function for solving monotone variational inequalities. Comput. Optim. Appl. 17, 255–277 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yamashita, N., Fukushima, M.: On the level-boundedness of the natural residual function for variational inequality problems. Pac. J. Optim. 1, 625–630 (2005)

    MATH  MathSciNet  Google Scholar 

  26. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yu Wang.

Additional information

This research was supported by the National Natural Science Foundation of China (10571106) and CityU Strategic Research Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CY., Zhang, JZ. & Zhao, WL. Two Error Bounds for Constrained Optimization Problems and Their Applications. Appl Math Optim 57, 307–328 (2008). https://doi.org/10.1007/s00245-007-9023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-007-9023-8

Keywords

Navigation