Skip to main content
Log in

Influence of Perfluorobutanoic Acid (PFBA) on the Developmental Cycle and Damage Potential of the Beet Armyworm Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Perfluorobutanoic acid (PFBA), one of the short-chain replacement perfluoroalkyl substances, has been shown to accumulate in plants. The potential of PFBA to modulate the developmental cycle of the beet armyworm, Spodoptera exigua, a polyphagous pest, was investigated. Second-instar larvae were fed with PFBA-spiked artificial diets and leaves from soybean plants grown with PFBA-spiked irrigation water. Spiked PFBA concentrations were 200 μg/kg for the artificial diet, whereas 405 to 15,190 ng/kg accumulated in the soybean leaves. The larvae fed with the PFBA-spiked diet showed a significant increase in weight gain compared with the controls over a 7-day exposure period. A similar weight gain trend was observed with larvae fed with the PFBA-containing soybean leaves, with the dose–response data fitting into a Brain-Cousens hormesis model with a 57% stimulation over controls. The artificial diet treatments showed 66.7% metamorphosed larva to pupa at 9 days after exposure (dpe) compared with 33.3% of the controls. The adult emergence at 16-dpe followed a similar trend with 57.7% and 33.3%, respectively, for the exposed and control groups. The duration of transition from larvae to adults was more symmetrical and 0.5 day faster for the exposed groups over controls. The beet armyworm caused more damage on leaves from the PFBA exposed plants in a nonmonotonic dose–response manner. The results suggest PFBA may have a stimulatory impact on some hormonal signaling pathways at low doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annual Rev Entomol 47(1):817–844

    CAS  Google Scholar 

  • Belz RG, Piepho H (2012) Modeling effective dosages in hormetic dose-response studies. PLoS ONE 7(3):1–9

    Google Scholar 

  • Belz RG, Piepho H (2015) Statistical modeling of the hormetic dose zone and the toxic potency completes the quantitative description of hormetic dose responses. Environ Toxicol Chem 34(5):1169–1177

    CAS  Google Scholar 

  • Blaine AC, Rich CD, Hundal LS, Lau C, Mills MA, Harris KM et al (2013) Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: field and greenhouse studies. Environ Sci Technol 47(24):14062–14069

    CAS  Google Scholar 

  • Bots J, De Bruyn L, Snijkers T, Van den Branden B, Van Gossum H (2010) Exposure to perfluorooctane sulfonic acid (PFOS) adversely affects the life-cycle of the damselfly Enallagma cyathigerum. Environ Pollut 158(3):901–905

    CAS  Google Scholar 

  • Brain P, Cousens R (1989) An equation to describe dose-responses where there is stimulation of growth at low doses. Weed Res 29(2):93–96

    Google Scholar 

  • Braun JM (2017) Early life exposure to endocrine disrupting chemicals and childhood obesity and neurodevelopment. Nat Rev Endocrinol 3(3):161–173

    Google Scholar 

  • Butler CD, Trumble JT (2008) Effects of pollutants on bottom-up and top-down processes in insect-plant interactions. Environ Pollut 156(1):1–10

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474

    CAS  Google Scholar 

  • Calabrese EJ (2013) Biphasic dose responses in biology, toxicology and medicine: accounting for their generalizability and quantitative features. Environ Pollut 182:452–460

    CAS  Google Scholar 

  • Calabrese EJ, Blain RB (2011) The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Regul Toxicol Pharmacol 61:73–81

    CAS  Google Scholar 

  • Capinera JL (1999) Beet Armyworm, Spodoptera exigua (Hübner)(Insecta: Lepidoptera: Noctuidae). University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences. EENY105

  • Chang H-X, Hartman GL (2017) Characterization of insect resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Front Plant Sci 8:670

    Google Scholar 

  • Dalahmeh S, Tirgani S, Komakech AJ, Niwagaba CB, Ahrens L (2018) Per-and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Sci Total Environ 631:660–667

    Google Scholar 

  • Disi J, Simmons J, Zebelo, S (2019) Plant growth-promoting rhizobacteria-induced defense against insect herbivores. In: Maheshwari D, Dheeman S (eds) Field crops: sustainable management by PGPR. Sustainable development and biodiversity, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-30926-8_14

    Chapter  Google Scholar 

  • Eichele JL, Dreyer J, Heinz R, Foster SP, Prischmann-Voldseth DA, Harmon JP (2016) Soybean aphid response to their alarm pheromone E-ß-Farnesene (EBF). J Insect Behavior 29(4):385–394

    Google Scholar 

  • Fan Y, Chen J, Wang Z, Tan T, Li S, Li J et al (2019) Soybean (Glycine max L. Merr.) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis. BMC Plant Biol 19(1):34

    Google Scholar 

  • Fischer K, Zwaan BJ, Brakefield PM (2002) How does egg size relate to body size in butterflies. Oecologia 131(3):375–379

    Google Scholar 

  • Fried HG, Narayanan S, Fallen B (2018) Characterization of a soybean (Glycine max L. Merr.) germplasm collection for root traits. PloS ONE 13(7):e0200463

    Google Scholar 

  • Ghisi R, Vamerali T, Manzetti S (2019) Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: a review. Environ Res 169:326–341

    CAS  Google Scholar 

  • Giesy JP, Kannan K (2002) Perfluorochemical surfactants in the environment. Environ Sci Technol 36(7):146A–152A

    CAS  Google Scholar 

  • Greenberg SM, Sappington TW, Legaspi BC, Liu T-X, Setamou M (2001) Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Ann Entomol Soc Am 94(4):566–575

    Google Scholar 

  • Guo R, Sim W-J, Lee E-S, Lee J-H, Oh J-E (2010) Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants. Water Res 44(11):3476–3486

    CAS  Google Scholar 

  • Han J, Won E-J, Lee M-C, Seo JS, Lee S-J, Lee J-S (2015) Developmental retardation, reduced fecundity, and modulated expression of the defensome in the intertidal copepod Tigriopus japonicus exposed to BDE-47 and PFOS. Aquat Toxicol 165:136–143

    CAS  Google Scholar 

  • Kar S, Sepulveda MS, Roy K, Leszczynski J (2017) Endocrine-disrupting activity of per- and polyfluoroalkyl substances: exploring combined approaches of ligand and structure based modeling. Chemosphere 184:514–523

    CAS  Google Scholar 

  • Krafft MP, Riess JG (2015) Selected physicochemical aspects of poly- and per-fluoroalkylated substances relevant to performance, environment and sustainability-part one. Chemosphere 129:4–19

    CAS  Google Scholar 

  • Krippner J, Falk S, Brunn H, Georgii S, Schubert S, Stahl T (2015) Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). J Agric Food Chem 63(14):3646–3653

    CAS  Google Scholar 

  • Liu G, Dhana K, Furtado JD, Rood J, Zong G, Liang L et al (2018) Perfluoroalkyl substances and changes in body weight and resting metabolic rate in response to weight-loss diets: a prospective study. PLoS Med 15(2):e1002502

    Google Scholar 

  • Mahapatra CT, Damayanti NP, Guffey SC, Serafin JS, Irudayaraj J, Sepúlveda MS (2017) Comparative in vitro toxicity assessment of perfluorinated carboxylic acids. J Appl Toxicol 37(6):699–708

    CAS  Google Scholar 

  • Mardani-Talaei M, Nouri-Ganbalani G, Naseri B, Hassanpour M (2012) Life history studies of the beet armyworm, Spodoptera exigua (Hübner)(Lepidoptera: Noctuidae) on 10 corn hybrids. J Entomol Res Soc 14(3):9–18

    Google Scholar 

  • Mirth CK, Riddiford LM (2007) Size assessment and growth control: how adult size is determined in insects. BioEssays 29(4):344–355

    CAS  Google Scholar 

  • Mommaerts V, Hagenaars A, Meyer J, De Coen W, Swevers L, Mosallanejad H et al (2011) Impact of a perfluorinated organic compound PFOS on the terrestrial pollinator Bombusterrestris (Insecta, Hymenoptera). Ecotoxicology 20(2):447–456

    CAS  Google Scholar 

  • Nakagawa Y, Henrich VC (2009) Arthropod nuclear receptors and their role in molting. FEBS J 276(21):6128–6157

    CAS  Google Scholar 

  • Nijhout HF (1975) A threshold size for metamorphosis in the tobacco hornworm, Manduca sexta (L.). Biol Bull 149(1):214–225

    CAS  Google Scholar 

  • Post GB, Gleason JA, Cooper KR (2017) Key scientific issues in developing drinking water guidelines for perfluoroalkyl acids: contaminants of emerging concern. PLoS Biol 15(12):e2002855

    Google Scholar 

  • Scher DP, Kelly JE, Huset CA, Barry KM, Hoffbeck RW, Yingling VL et al (2018) Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere 196:548–555

    CAS  Google Scholar 

  • Sertkaya E, Bayram A, Kornosor S (2004) Egg and larval parasitoids of the beet armyworm Spodoptera exigua on maize in Turkey. Phytoparasitica 32(3):305

    Google Scholar 

  • Sheehan DM (2000) Activity of environmentally relevant low doses of endocrine disruptors and the bisphenol A controversy: initial results confirmed. Proc Soc Exp Biol Med 224:57–60

    CAS  Google Scholar 

  • Stahl T, Heyn J, Thiele H, Hüther J, Failing K, Georgii S et al (2009) Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Arch Environ Contam Toxicol 57(2):289–298

    CAS  Google Scholar 

  • Stahl T, Riebe RA, Falk S, Failing K, Brunn H (2013) Long-term lysimeter experiment to investigate the leaching of perfluoroalkyl substances (PFASs) and the carry-over from soil to plants: results of a pilot study. J Agric Food Chem 61(8):1784–1793

    CAS  Google Scholar 

  • Stinner D, Stinner B, McCartney D (1988) Effects of simulated acidic precipitation on plant-insect interactions in agricultural systems: corn and black cutworm larvae. J Environ Qual 17(3):371–376

  • Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455. https://doi.org/10.1210/er.2011-1050

    Article  CAS  Google Scholar 

  • Wang Y, Niu J, Zhang L, Shi J (2014) Toxicity assessment of perfluorinated carboxylic acids (PFCAs) towards the rotifer Brachionus calyciflorus. Sci Total Environ 491:266–270

    Google Scholar 

  • Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS (2003) Large effects from small exposures: I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Persp 111:994–1006

    CAS  Google Scholar 

  • Wilhelm M, Kraft M, Rauchfuss K, Hölzer J (2008) Assessment and management of the first German case of a contamination with perfluorinated compounds (PFC) in the region Sauerland, North Rhine-Westphalia. J Toxicol Environ Health A 71(11–12):725–733

    CAS  Google Scholar 

  • Xiang L, Chen L, Xiao T, Mo C-H, Li Y-W, Cai Q-Y et al (2017) Determination of trace perfluoroalkyl carboxylic acids in edible crop matrices: matrix effect and method development. J Agricultural Food Chem 65(39):8763–8772

    CAS  Google Scholar 

  • Xing G, Zhou B, Wang Y, Zhao T, Yu D, Chen S et al (2012) Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean. Theoretical Appl Genet 125(5):859–875

    Google Scholar 

  • Yang H-B, Zhao Y-Z, Tang Y, Gong H-Q, Guo F, Sun W-H et al (2019) Antioxidant defence system is responsible for the toxicological interactions of mixtures: a case study on PFOS and PFOA in Daphnia magna. Sci Total Environ 667:435–443

    CAS  Google Scholar 

  • Zebelo S, Song Y, Kloepper JW, Fadamiro H (2016) Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua). Plant, Cell Environ 39(4):935–943

    CAS  Google Scholar 

  • Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S et al (2017) Comparative transcriptome analysis of soybean response to bean pyralid larvae. BMC Genom 18(1):871

    Google Scholar 

  • Zhang L, Sun H, Wang Q, Chen H, Yao Y, Zhao Z et al (2019) Uptake mechanisms of perfluoroalkyl acids with different carbon chain lengths (C2-C8) by wheat (Triticum acstivnm L.). Sci Total Environ 654:19–27

    CAS  Google Scholar 

  • Zhao J, Sun Y, Xiao L, Tan Y, Jiang Y, Bai L (2018) Vitellogenin and vitellogenin receptor gene expression profiles in Spodoptera exigua are related to host plant suitability. Pest Manag Sci 74(4):950–958

    CAS  Google Scholar 

  • Zhou X, Zhou B, Truman JW, Riddiford LM (2004) Overexpression of broad: a new insight into its role in the Drosophila prothoracic gland cells. J Exper Biol 207(7):1151–1161

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Shimadzu Scientific Instruments, Columbia, MD, for providing the instrumentation for the PFBA analysis. The authors also recognize the funding from Title III and the Louis Stokes Alliances for Minority Participation (LSAMP) to support graduate students involved in this research. The authors thank Dr. Enosakhare G. Okungbowa for his contributions to the modeling computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Zebelo.

Ethics declarations

Conflicts of interest

No conflicts to declare.

Ethics Approval

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omagamre, E.W., Ojo, F., Zebelo, S.A. et al. Influence of Perfluorobutanoic Acid (PFBA) on the Developmental Cycle and Damage Potential of the Beet Armyworm Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae). Arch Environ Contam Toxicol 79, 500–507 (2020). https://doi.org/10.1007/s00244-020-00780-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-020-00780-5

Navigation