Skip to main content
Log in

Estimating the Bioconcentration Factors of Hydrophobic Organic Compounds from Biotransformation Rates Using Rainbow Trout Hepatocytes

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Determining the biotransformation potential of commercial chemicals is critical for estimating their persistence in the aquatic environment. In vitro systems are becoming increasingly important as screening methods for assessing the potential for chemical metabolism. Depletion rate constants (kd) for several organic chemicals with high octanol–water partition coefficient (Kow) values (9-methylanthracene, benzo(a)pyrene, chrysene, and PCB-153) in rainbow trout hepatocytes were determined to estimate biotransformation rate constants (kMET) that were used in fish bioconcentration factor (BCF) models. Benzo[a]pyrene was rapidly biotransformed when incubated singly; however, its depletion rate constant (kd) declined 79% in a mixture of all four chemicals. Chrysene also exhibited significant biotransformation and its depletion rate constant declined by 50% in the mixture incubation. These data indicate that biotransformation rates determined using single chemicals may overestimate metabolism in environments containing chemical mixtures. Incubations with varying cell concentrations were used to determine whether cell concentration affected kd estimates. No statistically significant change in depletion rate constants were seen, possibly due to an increase in nonspecific binding of hydrophobic chemicals as cell density increased, decreasing overall biotransformation. A new model was used to estimate BCFs from kMET values calculated from empirically derived kd values. The inclusion of kMET in models resulted in significantly lower BCF values (compared kMET = 0). Modelled BCF values were consistent with empirically derived BCF values from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson T, Koivusaari U (1986) Oxidative and conjugative metabolism of xenobiotics in isolated liver cells from thermally acclimated rainbow trout. Aquat Toxicol 8:85–92

    Article  CAS  Google Scholar 

  • Anzenbacher P, Niwa T, Tolbert LM, Sirimanne SR, Guengerich FP (1996) Oxidation of 9-alkylanthracenes by cytochrome P450 2B1, horseradish peroxidase, and iron tetraphenylporphine/iodosylbenzene systems: anaerobic and aerobic mechanisms. Biochemistry 35:2512–2520

    Article  CAS  Google Scholar 

  • Arnot J, Gobas F (2003) A generic QSAR for assessing the bioaccumulation potential of organic chemicals in aquatic food webs. QSAR Comb Sci 22:337–345

    Article  CAS  Google Scholar 

  • Arnot JA, Gobas F (2004) A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem 23:2343–2355

    Article  CAS  Google Scholar 

  • Arnot JA, Mackay D, Parkerton TF, Bonnell M (2008) A database of fish biotransformation rates for organic chemicals. Environ Toxicol Chem 27:2263–2270. https://doi.org/10.1897/08-058.1

    Article  CAS  Google Scholar 

  • Bauer E, Guo Z, Ueng Y-F, Bell LC, Zeldin D, Guengerich FP (1995) Oxidation of benzo[a]pyrene by recombinant human cytochrome P450 enzymes. Chem Res Toxicol 8:136–142

    Article  CAS  Google Scholar 

  • Baussant T, Sanni S, Skadsheim A, Jonsson G, Børseth J, Gaudebert B (2001) Bioaccumulation of polycyclic aromatic compounds: 2. Modeling bioaccumulation in marine organisms chronically exposed to dispersed oil. Environ Toxicol Chem 20:1185–1195

    Article  CAS  Google Scholar 

  • Bisswanger H (2008) Enzyme kinetics. Principles and methods. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Bodar C, de Bruijn J, Vermeire T, van der Zandt P (2002) Trends in risk assessment of chemicals in the European Union. Hum Ecol Risk Assess 8:1825–1843

    Article  Google Scholar 

  • Boese B, Ozretich R, Lamberson J, Swartz R, Cole F, Pelletier J, Jones J (1999) Toxicity and Phototoxicity of Mixtures of Highly Lipophilic PAH Compounds in Marine Sediment: Can the ΣPAH Model Be Extrapolated? Arch Environ Contam Toxicol 36:270–280

    Article  CAS  Google Scholar 

  • Buckman AH, Brown SB, Hoekstra PF, Fisk AT (2004) Toxicokinetics of three polychlorinated biphenyl technical mixtures in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 23:1725–1736

    Article  CAS  Google Scholar 

  • Buckman AH, Wong CS, Chow EA, Brown SB, Solomon KR, Fisk AT (2006) Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish. Aquat Toxicol 78:176–185

    Article  CAS  Google Scholar 

  • Cohen Y, Clay R (1994) Multimedia partitioning of particle-bound organics. J Hazard Mater 37:507–526

    Article  CAS  Google Scholar 

  • Cowan-Ellsberry CE, Dyer SD, Erhardt S, Bernhard MJ, Roe AL, Dowty ME, Weisbrod AV (2008) Approach for extrapolating in vitro metabolism data to refine bioconcentration factor estimates. Chemosphere 70:1804–1817

    Article  CAS  Google Scholar 

  • De Wolf W, Comber M, Douben P, Gimeno S, Holt M, Léonard M, Lillicrap A, Sijm D, Van Egmond R, Weisbrod A (2007) Animal use replacement, reduction, and refinement: development of an integrated testing strategy for bioconcentration of chemicals in fish. Integr Environ Assess Manag 3:3–17

    Article  Google Scholar 

  • deBruyn AM, Gobas F (2009) The sorptive capacity of animal protein. Environ Toxicol Chem 26:1803–1808

    Article  Google Scholar 

  • Dimitrov S, Dimitrova N, Parkerton T, Comber M, Bonnell M, Mekenyan O (2005) Base-line model for identifying the bioaccumulation potential of chemicals. SAR QSAR Environ Res 16:531–554

    Article  CAS  Google Scholar 

  • Douben PET (2003) PAHs: an ecotoxicological perspective. Wiley, Kenora

    Book  Google Scholar 

  • Fay KA, Fitzsimmons PN, Hoffman AD, Nichols JW (2014) Optimizing the use of rainbow trout hepatocytes for bioaccumulation assessments with fish. Xenobiotica 44:345–351

    Article  CAS  Google Scholar 

  • Fay KA, Fitzsimmons PN, Hoffman AD, Nichols JW (2017) Comparisons of trout hepatocytes and liver S9 fractions as in vitro models for predicting hepatic clearance in fish. Environ Toxicol Chem 36(2):463–471

    Article  CAS  Google Scholar 

  • Fox K, Zauke G, Butte W (1994) Kinetics of bioconcentration and clearance of 28 polychlorinated biphenyl congeners in Zebrafish (Brachydanio rerio). Ecotoxicol Environ Saf 28:99–109

    Article  CAS  Google Scholar 

  • Gerhart E, Carlson R (1978) Hepatic mixed-function oxidase activity in rainbow trout exposed to several polycyclic aromatic compounds. Environ Res 17:284–295

    Article  CAS  Google Scholar 

  • Geyer H, Rimkus G, Scheunert I, Kaune A, Schramm K, Kettrup A, Zeeman M, Muir D, Hansen L, Mackay D (2001) Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in Fish and other organisms including Humans. Bioaccumulation – New Aspects and Developments 1:1–166

  • Gill KA, Walsh PJ (1990) Effects of temperature on metabolism of benzo[a]pyrene by toadfish (Opsanus beta) hepatocytes. Can J Fish Aquat Sci 47(4):831–837

    Article  CAS  Google Scholar 

  • Gobas F, MacKay D (1987) Dynamics of hydrophobic organic chemical bioconcentration in fish. Environ Toxicol Chem 6:495–504

    Article  CAS  Google Scholar 

  • Gobas FAPC, de Wolf W, Burkhard LP, Verbruggen E, Plotzke K (2009) Revisiting bioaccumulation criteria for POPs and PBT assessments. Integr Environ Assess Manag 5:624–637

    Article  CAS  Google Scholar 

  • Golding CJ, Gobas F, Birch GF (2008) A fugacity approach for assessing the bioaccumulation of hydrophobic organic compounds from estuarine sediment. Environ Toxicol Chem 27(5):1047–1054

    Article  CAS  Google Scholar 

  • Gourley ME, Kennedy CJ (2009) Energy allocations to xenobiotic transport and biotransformation reactions in rainbow trout (Oncorhynchus mykiss) during energy intake restriction. Comp Biochem Phys C 150(2):270–278

    Google Scholar 

  • Government of Canada (1995) Toxic Substances Management Policy. In: Persistence and Bioaccumulation Criteria, vol 2. pp 40–499

  • Government of Canada (1999) Canadian Environmental Protection Act, 1999. In: Public Works and Government Services, Ed., vol Part III. Canada Gazette Ottawa

  • Hampton JA, Lantz RC, Hinton DE (1989) Functional units in rainbow trout (Salmo gairdneri, Richardson) liver: III. Morphometric analysis of parenchyma, stroma, and component cell types. Am J Anat 185:58–73

    Article  CAS  Google Scholar 

  • Han X, Nabb DL, Mingoia RT, Yang C-H (2007) Determination of xenobiotic intrinsic clearance in freshly isolated hepatocytes from rainbow trout (Oncorhynchus mykiss) and rat and its application in bioaccumulation assessment. Environ Sci Technol 41:3269–3276

    Article  CAS  Google Scholar 

  • Han X, Mingoia RT, Nabb DL, Yang C-H, Snajdr SI, Hoke RA (2008) Xenobiotic intrinsic clearance in freshly isolated hepatocytes from rainbow trout (Oncorhynchus mykiss): determination of trout hepatocellularity, optimization of cell concentrations and comparison of serum and serum-free incubations. Aquat Toxicol 89:11–17

    Article  CAS  Google Scholar 

  • Han X, Nabb DL, Yang CH, Snajdr SI, Mingoia RT (2009) Liver microsomes and S9 from rainbow trout (Oncorhynchus mykiss): comparison of basal-level enzyme activities with rat and determination of xenobiotic intrinsic clearance in support of bioaccumulation assessment. Environ Toxicol Chem 28:481–488

    Article  CAS  Google Scholar 

  • Harrison MF (1953) Composition of the liver cell. Proc R Soc B Biol Sci 141:203–216

    Article  CAS  Google Scholar 

  • Hewitt NJ, Gómez Lechón MJ, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234

    Article  CAS  Google Scholar 

  • Hickox W, Denton J (2000) Technical support document for exposure assessment and stochastic analysis. 1:1–265

  • Hildebrand JL, Bains OS, Lee DSH, Kenned CJ (2009) Functional and energetic characterization of P-gp-mediated doxorubicin transport in rainbow trout (Oncorhynchus mykiss) hepatocytes. Com Biochem Physiol Part C Toxicol Pharmacol 149:65–72

    Article  CAS  Google Scholar 

  • Jimenez B, Cirmo C, McCarthy J (1987) Effects of feeding and temperature on uptake, elimination and metabolism of benzo(a)pyrene in the bluegill sunfish (Lepomis macrochirus). Aquat Toxicol 10:41–57

    Article  CAS  Google Scholar 

  • Johnsen S, Kukkonen J, Grande M (1989) Influence of natural aquatic humic substances on the bioavailability of benzo(a)pyrene to Atlantic Salmon. Sci Total Environ 81:691-702

  • Johnston BD, Alexander G, Kennedy CJ (1999) Thermal modulation of the toxicokinetics of benzo [a] pyrene in isolated hepatocytes of sablefish (Anoplopoma fimbria), black rockfish (Sebastes melanops), and chub mackerel (Scomber japonicus). Comp Biochem Phys C 124:157–164

    Article  CAS  Google Scholar 

  • Jones HM, Houston JB (2004) Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations. Drug Metab Dispos 32:973–982

    Article  CAS  Google Scholar 

  • Kennedy CJ, Gill KA, Walsh PJ (1989) The effects of temperature on the uptake of benzo(a)pyrene in the gulf toadfish, Opsanus beta. Environ Toxicol Chem 8:863–869

    Article  CAS  Google Scholar 

  • Kennedy C (1990) Toxicokinetic studies of chlorinated phenols and polycyclic aromatic hydrocarbons in rainbow trout (Oncorhynchus mykiss), vol 1. pp 1–141

  • Kennedy CJ, Tierney KB (2008) Energy intake affects the biotransformation rate, scope for induction, and metabolite profile of benzo[a]pyrene in rainbow trout. Aquat Toxicol 90:172–181

    Article  CAS  Google Scholar 

  • Kennedy C, Walsh P (1994) The effects of temperature on the uptake and metabolism of benzo[alpyrene in isolated gill cells of the gulf toadfish, Opsanus beta. Fish Physiol Biochem 13:93–103

    Article  CAS  Google Scholar 

  • Leversee G, Landrum P, Giesy J, Fannin T (1983) Humic acids reduce bioaccumulation of some polycyclic aromatic hydrocarbons. Can J Fish Aquat Sci 40:63–69

    Article  Google Scholar 

  • Levine S, Czosnyka H, Oris J (1997) Effect of the fungicide clotrimazole on the bioconcentration of benzo[a]pyrene in gizzard shad (Dorosoma cepedianum): In vivo and in vitro inhibition of cytochrome P4501A activity. Environ Toxicol Chem 16:306–311

    Article  CAS  Google Scholar 

  • Lu P, Metcalf R, Plummer N, Mandel D (1977) The environmental fate of three carcinogens: Benzo-(α)-pyrene, benzidine, and vinyl chloride evaluated in laboratory model ecosystems. Arch Environ Contam Toxicol 6:129–142

    Article  CAS  Google Scholar 

  • Lynch T, Johnson H, Adams W (1982) The fate of atrazine and a hexachlorobiphenyl isomer in naturally-derived model stream ecosystems. Environ Toxicol Chem 1:179–192

    Article  CAS  Google Scholar 

  • McCarthy J, Jimenez B (1985) Reduction in bioavailability to bluegills of polycyclic aromatic hydrocarbons bound to dissolved humic material. Environ Toxicol Chem 4:511–521

    Article  CAS  Google Scholar 

  • Mazur CS, Kenneke JF, Tebes-Stevens C, Okino MS, Lipscomb JC (2007) In vitro metabolism of the fungicide and environmental contaminant trans-bromuconazole and implications for risk assessment. J Toxicol Environ Health A 70:1241–1250

    Article  CAS  Google Scholar 

  • McFarland VA, Clarke JU (1989) Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis. Environ Health Persp 81:225

    Article  CAS  Google Scholar 

  • Moon T, Walsh P, Mommsen T (1985) Fish hepatocytes: a model metabolic system. Can J Fish Aquat Sci 42:1772–1782

    Article  CAS  Google Scholar 

  • Muir D, Yarechewski A, Webster G (1985) Bioconcentration of four chlorinated dioxins by Rainbow Trout and Fathead Minnows. Aquatic toxicology and hazard assessment: Eighth Symposium 1:440–454

  • Newsted J, Giesy J (1987) Predictive models for photoinduced acute toxicity of polycyclic aromatic hydrocarbons to Daphnia magna, strauss (cladocera, crustacea). Environ Toxicol Chem 6:445–461

    Article  CAS  Google Scholar 

  • Nichols JW, Fitzsimmons PN, Burkhard LP (2009) In vitro–in vivo extrapolation of quantitative hepatic biotransformation data for fish. II. Modeled effects on chemical bioaccumulation. Environ Toxicol Chem 26:1304–1319

    Article  Google Scholar 

  • Nichols JW, Huggett DB, Arnot JA, Fitzsimmons PN, Cowan-Ellsberry CE (2013) Toward improved models for predicting bioconcentration of well-metabolized compounds by rainbow trout using measured rates of in vitro intrinsic clearance. Environ Toxicol Chem 32:1611–1622

    CAS  Google Scholar 

  • Nishimoto M, Yanagida G, Stein J, Baird W, Varanasi U (1992) The metabolism of benzo (a) pyrene by English sole (Parophrys vetulus): comparison between isolated hepatocytes in vitro and liver in vivo. Xenobiotica 22:949–961

    Article  CAS  Google Scholar 

  • Oliver B, Niimi A (1985) Bioconcentration factors of some halogenated organics for rainbow trout: limitations in their use for prediction of environmental residues. Environ Sci Technol 19:842–849

    Article  CAS  Google Scholar 

  • Organisation for Economic Co-operation (OECD) (1998) OECD Guidelines for the testing of chemicals. OECD Publishing

  • Organisation for Economic Co-operation and Development (2012) Test no. 305: bioaccumulation in fish: aqueous and dietary exposure. OECD Guidelines for the Testing of Chemicals, Paris

    Google Scholar 

  • Parkerton TF, Arnot JA, Weisbrod AV, Russom C, Hoke RA, Woodburn K, Traas T, Bonnell M, Burkhard LP, Lampi MA (2008) Guidance for evaluating in vivo fish bioaccumulation data. Integr Environ Assess Manag 4:139–155

    Article  CAS  Google Scholar 

  • Pesonen M, Andersson TB (1997) Fish primary hepatocyte culture; an important model for xenobiotic metabolism and toxicity studies. Aquat Toxicol 37:253–267

    Article  CAS  Google Scholar 

  • Rogers M (2003) The European Commission’s white paper—strategy for a future chemicals policy: a review. Risk Anal 23:381–388

    Article  Google Scholar 

  • Sjögren E, Lennernäs H, Andersson TB, Gråsjö J, Bredberg U (2009) The multiple depletion curves method provides accurate estimates of intrinsic clearance (CLint), maximum velocity of the metabolic reaction (Vmax), and Michaelis constant (Km): accuracy and robustness evaluated through experimental data and Monte Carlo simulations. Drug Metab Dispos 37:47–58

    Article  CAS  Google Scholar 

  • Southworth G, Beauchamp J, Schmieder P (1978) Bioaccumulation potential of polycyclic aromatic hydrocarbons in Daphnia pulex. Water Res 12:973–977

    Article  CAS  Google Scholar 

  • Stegeman JJ, Hahn ME (1994) Biochemistry and molecular biology of monooxygenases: current perspectives on forms, functions, and regulation of cytochrome P450 in aquatic species, vol 87. Lewis Publishers, Boca Raton

    Google Scholar 

  • Uchea C, Sarda S, Schulz-Utermoehl T, Owen S, Chipman KJ (2013) In vitro models of xenobiotic metabolism in trout for use in environmental bioaccumulation studies. Xenobiotica 43:421–431

    Article  CAS  Google Scholar 

  • UNEP (2001) Final act of the conference of plenipotentiaries on the Stockholm convention on persistent organic polluntants. In: Proceeding of the Conference of plenipotentiaries on persistent organic pollutants. Stockholm

  • US EPA (1976) Toxic Substances Control Act 1976

  • Vasiluk L, Pinto LJ, Tsang WS, Gobas F, Eickhoff C, Moore MM (2008) The uptake and metabolism of benzo [a] pyrene from a sample food substrate in an in vitro model of digestion. Food Chem Toxicol 46:610–618

    Article  CAS  Google Scholar 

  • Walker J, Carlsen L, Hulzebos E, Simon-Hettich B (2002) Global Government applications of analogues, SAR s and QSAR s to predict aquatic toxicity, chemical or physical properties, environmental fate parameters and health effects of organic chemicals. SAR QSAR Environ Res 13:607–616

    Article  CAS  Google Scholar 

  • Weijs L, Yang RSH, Covaci A, Das K, Blust R (2010) Physiologically based pharmacokinetic (PBPK) models for lifetime exposure to PCB 153 in male and female harbor porpoises (Phocoena phocoena): model development and evaluation. Environ Sci Technol Lett 44(18):7023–7030

    Article  CAS  Google Scholar 

  • Weisbrod A, Burkhard L, Arnot J, Mekenyan O, Howard P, Russom C, Boethling R, Sakuratani Y, Traas T, Bridges T, Lutz C, Bonnell M, Woodburn K, Parkerton T (2007) Workgroup report: review of fish bioaccumulation databases used to identify persistent, bioaccumulative, toxic substances. Environ Health Perspect 115:255–261

    Article  CAS  Google Scholar 

  • Weisbrod AV, Sahi J, Segner H, James MO, Nichols J, Schultz I, Erhardt S, Cowan-Ellsberry C, Bonnell M, Hoeger B (2009) The state of in vitro science for use in bioaccumulation assessments for fish. Environ Toxicol Chem 28:86–96. https://doi.org/10.1897/08-015.1

    Article  CAS  Google Scholar 

  • Wei D, Zhang A, Wu C, Han S, Wang L (2001) Progressive study and robustness test of QSAR model based on quantum chemical parameters for predicting BCF of selected polychlorinated organic compounds (PCOCs). Chemosphere 44:1421–1428

    Article  CAS  Google Scholar 

  • Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharm 206:73–93

    Article  CAS  Google Scholar 

  • Zuckerbraun BS, Chin BY, Bilban M, de Costa d’Avila J, Rao J, Billiar TR, Otterbein LE (2007) Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J 21:1099–1106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada (Strategic Grant Program) for financial support (CJK, MM, and FCPG). The technical assistance of V. Otton is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trowell, J.J., Gobas, F.A.P.C., Moore, M.M. et al. Estimating the Bioconcentration Factors of Hydrophobic Organic Compounds from Biotransformation Rates Using Rainbow Trout Hepatocytes. Arch Environ Contam Toxicol 75, 295–305 (2018). https://doi.org/10.1007/s00244-018-0508-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-018-0508-z

Navigation