Skip to main content
Log in

A Comparative Study on Macro- and Microelement Bioaccumulation Properties of Leaves and Bark of Quercus petraea and Pinus sylvestris

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Trees are widely used for biomonitoring and filtering air in industrial, urban, and rural areas. This research was undertaken to examine accumulation capacities of macroelements (Ca, K, Mg, Na) and trace metals (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in needles and bark of Pinus sylvestris and leaves and bark of Quercus petraea growing in the vicinity of the chlor-alkali plant PCC Rokita in Brzeg Dolny (Lower Silesia, SW Poland). Because Scots pine is well studied and considered a useful bioindicator, we have used this species as a base for comparison of the accumulation ability of sessile oak that shows some features of good bioindicator, but whose biogeochemistry was scarcely studied. Results showed that for both species leaves contained more macroelements (Ca, K, Mg), whereas the bark was richer in most trace metals (Cd, Cr, Cu, Fe, and Pb). However, trees studied differed with respect to element content. Oak bark and leaves were more effective in accumulating macro- and trace elements (bark Cd, Co, Cr, Cu, K, Mg, Mn, Na, Ni, Pb and leaves Ca, Cr, Cu, Fe, K, Mg, Na, Ni) than Scots pine tissues. Nevertheless, foliar metal accumulation index of these species was similar, suggesting that their overall ability to accumulate trace metals was similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aboal JR, Fernández JA, Carballeira A (2004) Oak leaves and pine needles as biomonitors of airborne trace elements pollution. Environ Exp Bot 51:215–225

    Article  CAS  Google Scholar 

  • Alahabadi A, Ehrampoush MH, Miri M, Aval HE, Yousefzadeh S, Ghaffari HR, Ahmadi E, Talebi P, Fathabadi ZA, Babai F, Nikoonahad A, Shara K, Hosseini-Bandegharaei A (2017) A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere 172:459–467

    Article  CAS  Google Scholar 

  • Arasimowicz M, Niemiec M, Wiśniowska-Kielian B (2010) Zinc, copper and chromium content in soils and needles of the Scots pine (Pinus silvestris L.) from the Krakow Agglomeration terrain. Ecol Chem Eng A 17(12):1534–1552

    Google Scholar 

  • Bargagli R, Monaci F, Agnorelli C (2003) Oak leaves as accumulators of airborne elements in an area with geochemical and geothermal anomalies. Environ Pollut 124:321–329

    Article  CAS  Google Scholar 

  • Baslar S, Dogan Y, Durkan N, Bag H (2009) Biomonitoring of zinc and manganese in bark of Turkish red pine of Western Anatolia. J Environ Biol 30(5):831–834

    CAS  Google Scholar 

  • Białobok S, Boratyński A, Bugała W (1993) Biologia sosny zwyczajnej. Polska Akademia Nauk, Instytut Dendrologii. Sorus, Poznań-Kórnik

    Google Scholar 

  • Bohm P, Wolterbeek H, Verburg T, Musilek L (1998) The use of tree bark for environmental pollution monitoring in the Czech Republic. Environ Pollut 102:243–250

    Article  CAS  Google Scholar 

  • Bugała W (2006) Dęby. Nasze drzewa leśne monografie popularnonaukowe Tom 11. Polska Akademia Nauk, Instytut Dendrologii, Bogucki Wydawnictwo Naukowe, Poznań

  • Cekstere G, Laivins M, Osvalde A (2015) Chemical composition of Scots pine bark as a bioindicator of environmental quality in Riga, Latvia. Proc Latvian Acad Sci B 69(3):87–97

    CAS  Google Scholar 

  • Coskun M (2006) Toxic metals in the Austrian pine (Pinus nigra) bark in the Thrace Region, Turkey. Environ Monitor Assess 121:173–179

    Article  CAS  Google Scholar 

  • Dmuchowski W, Bytnerowicz A (1995) Monitoring environmental pollution in Poland by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environ Pollut 87:87–104

    Article  CAS  Google Scholar 

  • Dmuchowski W, Gozdowski D, Baczewska AH, Brągoszewska P (2011) The comparison bioindication methods in the assessment of environmental pollution with heavy metals. Ochrona Środowiska i Zasobów Naturalnych 50:170–179

    Google Scholar 

  • Dogan Y, Durkan N, Baslar S (2007) Trace element pollution biomonitoring using the bark of Pinus brutia (Turkish red pine) in the Western Anatolian part of Turkey. Trace Elem Electrolytes 24(3):146–156

    Article  CAS  Google Scholar 

  • Dogan Y, Ugulu I, Baslar S (2010) Turkish red pine as a biomonitor: a comperative study of the accumulation of trace elements in needles and barks. Ekoloji 19(75):88–96

    Article  CAS  Google Scholar 

  • Gałuszka A (2005) The chemistry of soils, rocks and plant bioindicators in three ecosystems of the Holy Cross Mountains, Poland. Environ Monitor Assess 110:55–70

    Article  Google Scholar 

  • Gielen S, i Batlle JV, Vincke C, Van Hees M, Vandenhove H (2016) Concentrations and distributions of Al, Ca, Cl, K, Mg and Mn in a Scots pine forest in Belgium. Ecol Model 324:1–10

    Article  CAS  Google Scholar 

  • Grodzińska K (1971) Acidification of tree bark as a measure of air pollution in southern Poland. Bull Acad Pol Sci Ser Sci Biol 19:189–195

    Google Scholar 

  • Harju L, Saarela KE, Rajander J, Lill JO, Lindroos A, Heselius SJ (2002) Environmental monitoring of trace elements in bark of Scots pine by thick-target PIXE. Nucl Instrum Methods Phys Res B 189:163–167

    Article  CAS  Google Scholar 

  • HELCOM (2003) Thematic report on HELCOM PITF regional workshops held in Poland; status of the Polish JCP hot spots Baltic Sea environment proceedings No. 91, the Helsinki Commission—Baltic Marine Environment Protection Commission

  • Hoodaji M, Mitra Ataabadi M, Najafi P (2012) Biomonitoring of airborne heavy metal contamination. In: Khare M (ed) Air pollution: monitoring, modelling, health and control. InTech, Rijeka, pp 97–122

    Google Scholar 

  • Hu Y, Wang D, Wei L, Zhang X, Song B (2014) Bioaccumulation of heavy metals in plant leaves from Yan’an city of the Loess Plateau, China. Ecotoxicol Environ Saf 110:82–88

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants, 4th edn. CRC Press Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Kabata-Pendias A, Pendias H (1999) Biogeochemia pierwiastków śladowych. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  • Kandziora-Ciupa M, Ciepał R, Nadgórska-Socha A, Barczyk G (2016) Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites. Ecotoxicology 25:970–981

    Article  CAS  Google Scholar 

  • Khan S, Khan MA, Rehman S (2011) Lead and cadmium contamination of different roadside soils and plants in Peshawar City, Pakistan. Pedosphere 21(3):351–357

    Article  Google Scholar 

  • Kolon K, Ruczakowska A, Samecka-Cymerman A, Kempers AJ (2015) Brachythecium rutabulum and Betula pendula as bioindicators of heavy metal pollution around a chlor-alkali plant in Poland. Ecol Indic 52:404–410

    Article  CAS  Google Scholar 

  • Kosiorek M, Modrzewska B, Wyszkowski M (2016) Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment. Environ Monit Assess 188:598–610

    Article  Google Scholar 

  • Kovacs M, Penksza K, Turcsanyi G, Kaszab L, Toth S, Szoke P (1994) Comparative investigation of the distribution of chemical elements in an Aceri tatarico-quercetum plant community and in stands of cultivated plants. In: Markert B (ed) Environmental sampling for trace analysis. VCH, Weinheim, pp 435–442

    Chapter  Google Scholar 

  • Kummer U, Pacyna J, Pacyna E, Friedrich R (2009) Assessment of heavy metal releases from the use phase of road transport in Europe. Atmos Environ 43:640–647

    Article  CAS  Google Scholar 

  • Laaksovirta K, Olkkonen H, Alakuıjala P (1976) Observations on the lead content of lichen and bark adjacent to a high way in southern Finland. Environ Pollut 1:247–255

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Developments in environmental modeling, Amsterdam

    Google Scholar 

  • Liu Y, Zhu Y, Ding H (2007) Lead and cadmium in leaves of deciduous trees in Beijing, China: development of a metal accumulation index (MAI). Environ Pollut 145:387–390

    Article  CAS  Google Scholar 

  • Markert B (1992) Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio 103:1–30

    Google Scholar 

  • Migaszewski ZM, Gałuszka A (1997) Wykorzystanie sosny do badań bioindykacyjnych. Przegląd Geologiczny 5(4):403–407

    Google Scholar 

  • Migaszewski ZM, Gałuszka A, Pasławski P (2004) Baseline element concentrations in soils and plant bioindicators of selected national parks of Poland. Geol Q 48(4):383–394

    Google Scholar 

  • Migaszewski ZM, Gałuszka A, Pasławski P (2005) The use of the barbell cluster ANOVA design for the assessment of environmental pollution: a case study, Wigierski National Park, NE Poland. Environ Pollut 133:213–223

    Article  CAS  Google Scholar 

  • Pająk M, Halecki W, Gąsiorek M (2017) Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb–Zn ore mining and processing plants: explicitly spatial considerations of ordinary kriging based on a GIS approach. Chemosphere 168:851–859

    Article  Google Scholar 

  • Parzych A, Mochnacký S, Sobisz S, Kurhaluk N, Polláková N (2017) Accumulation of heavy metals in needles and bark of Pinus species. Folia For Pol Ser A For 59(1):34–44

    Google Scholar 

  • Poikolainen J (2004) Mosses, epiphytic lichens and tree bark as biomonitors for air pollutants—specifically for heavy metals in regional surveys. Faculty of Science, Department of Biology, University of Oulu, Oulu

    Google Scholar 

  • Rossini Oliva S, Mingorance MD (2006) Assessment of airborne heavy metal pollution by aboveground plant parts. Chemosphere 65:177–182

    Article  CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (2007) Heavy metals in aquatic macrophytes from two small rivers polluted by urban, agricultural and textile industry sewages SW Poland. Arch Environ Contam Toxicol 53:198–206

    Article  CAS  Google Scholar 

  • Samecka-Cymerman A, Kosior G, Kempers AJ (2006) Comparison of the moss Pleurozium schreberi with needles and bark of Pinus sylvestris as biomonitors of pollution by industry in Stalowa Wola (southeast Poland). Ecotoxicol Environ Saf 65:108–117

    Article  CAS  Google Scholar 

  • Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K (2011) Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut 159:3560–3570

    Article  CAS  Google Scholar 

  • Schulz H, Popp P, Huhn G, Stark H-J, Schuurmann G (1999) Biomonitoring of airborne in organic and organic pollutants by means of pine tree barks. I. Temporal and spatial variations. Sci Total Environ 232:49–58

    Article  CAS  Google Scholar 

  • StatSoft, Inc. (2016) STATISTICA (data analysis software system), version 13. www.statsoft.com

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1964) Flora Europaea, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Ugolini F, Tognetti R, Raschi A, Bacci A (2013) Quercus ilex L. as bioaccumulators for heavy metals in urban areas: effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban For Urban Green 12:576–584

    Article  Google Scholar 

  • Vaughan IP, Ormerod SJ (2005) Increasing the value of principal components analysis for simplifying ecological data: a case study with rivers and river birds. J Appl Ecol 42:487–497

    Article  Google Scholar 

  • Vural A (2016) Assessment of sessile oak (Quercus petraea L.) leaf as bioindicator for exploration geochemistry. Acta Phys Pol A 130(1):191–193

    Article  CAS  Google Scholar 

  • Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles: possibilities and perspectives. Environ Pollut 120:11–21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Klink.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klink, A., Polechońska, L., Dambiec, M. et al. A Comparative Study on Macro- and Microelement Bioaccumulation Properties of Leaves and Bark of Quercus petraea and Pinus sylvestris . Arch Environ Contam Toxicol 74, 71–79 (2018). https://doi.org/10.1007/s00244-017-0439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-017-0439-0

Navigation