Skip to main content
Log in

Molecular Mechanisms of Crude Oil Developmental Toxicity in Fish

  • Special Issue: Ocean Spills and Accidents
  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

With major oil spills in Korea, the United States, and China in the past decade, there has been a dramatic increase in the number of studies characterizing the developmental toxicity of crude oil and its associated polycyclic aromatic compounds (PACs). The use of model fish species with associated tools for genetic manipulation, combined with high throughput genomics techniques in nonmodel fish species, has led to significant advances in understanding the cellular and molecular bases of functional and morphological defects arising from embryonic exposure to crude oil. Following from the identification of the developing heart as the primary target of crude oil developmental toxicity, studies on individual PACs have revealed a diversity of cardiotoxic mechanisms. For some PACs that are strong agonists of the aryl hydrocarbon receptor (AHR), defects in heart development arise in an AHR-dependent manner, which has been shown for potent organochlorine agonists, such as dioxins. However, crude oil contains a much larger fraction of compounds that have been found to interfere directly with cardiomyocyte physiology in an AHR-independent manner. By comparing the cellular and molecular responses to AHR-independent and AHR-dependent toxicity, this review focuses on new insights into heart-specific pathways underlying both acute and secondary adverse outcomes to crude oil exposure during fish development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams J, Bornstein JM, Munno K et al (2014) Identification of compounds in heavy fuel oil that are chronically toxic to rainbow trout embryos by effects-driven chemical fractionation. Environ Toxicol Chem 33:825–835

    Article  CAS  Google Scholar 

  • Adeyemo OK, Kroll KJ, Denslow ND (2015) Developmental abnormalities and differential expression of genes induced in oil and dispersant exposed Menidia beryllina embryos. Aquat Toxicol 168:60–71

    Article  CAS  Google Scholar 

  • Antkiewicz DS, Burns CG, Carney SA, Peterson RE, Heideman W (2005) Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol Sci 84:368–377

    Article  CAS  Google Scholar 

  • Arnaout R, Ferrer T, Huisken J et al (2007) Zebrafish model for human long QT syndrome. Proc Natl Acad Sci USA 104:11316–11321

    Article  CAS  Google Scholar 

  • Attili S, Hughes SM (2014) Anaesthetic tricaine acts preferentially on neural voltage-gated sodium channels and fails to block directly evoked muscle contraction. PLoS ONE 9:e103751

    Article  Google Scholar 

  • Barron MG, Carls MG, Heintz RA, Rice SD (2004a) Evaluation of fish early life-stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures. Toxicol Sci 78:60–67

    Article  CAS  Google Scholar 

  • Barron MG, Heintz RA, Rice SD (2004b) Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Mar Environ Res 58:95–100

    Article  CAS  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  CAS  Google Scholar 

  • Bornstein JM, Adams J, Hollebone B, King T, Hodson PV, Brown RS (2014) Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos. Environ Toxicol Chem 33:814–824

    Article  CAS  Google Scholar 

  • Brette F, Machado B, Cros C, Incardona JP, Scholz NL, Block BA (2014) Crude oil impairs cardiac excitation–contraction coupling in fish. Science 343:772–776

    Article  CAS  Google Scholar 

  • Brette F, Shiels HA, Galli GLJ et al (2017) A Novel cardiotoxic mechanism for a pervasive global pollutant. Sci Rep 7:41476

    Article  CAS  Google Scholar 

  • Carls MG, Rice SD, Hose JE (1999) Sensitivity of fish embryos to weathered crude oil: part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi). Environ Toxicol Chem 18:481–493

    Article  CAS  Google Scholar 

  • Carls MG, Holland L, Larsen M, Collier TK, Scholz NL, Incardona JP (2008) Fish embryos are damaged by dissolved PAHs, not oil particles. Aquat Toxicol 88:121–127

    Article  CAS  Google Scholar 

  • Carney SA, Peterson RE, Heideman W (2004) 2,3,7,8-Tetrachlorodibenzo-p-dioxin activation of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A-independent mechanism in zebrafish. Mol Pharmacol 66:512–521

    CAS  Google Scholar 

  • Carney SA, Chen J, Burns CG, Xiong KM, Peterson RE, Heideman W (2006) Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol 70:549–561

    Article  CAS  Google Scholar 

  • Chen JN, van Eeden FJ, Warren KS et al (1997) Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124:4373–4382

    CAS  Google Scholar 

  • Chen J, Seebohm G, Sanguinetti MC (2002) Position of aromatic residues in the S6 domain, not inactivation, dictates cisapride sensitivity of HERG and eag potassium channels. Proc Natl Acad Sci USA 99:12461–12466

    Article  CAS  Google Scholar 

  • Chen H, Shi S, Acosta L et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231

    Article  CAS  Google Scholar 

  • Chen J, Carney SA, Peterson RE, Heideman W (2008) Comparative genomics identifies genes mediating cardiotoxicity in the embryonic zebrafish heart. Physiol Gen 33:148–158

    Article  CAS  Google Scholar 

  • Clark BW, Matson CW, Jung D, Di Giulio RT (2010) AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus). Aquat Toxicol 99:232–240

    Article  CAS  Google Scholar 

  • Di Toro DM, McGrath JA, Hansen DJ (2000) Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environ Toxicol Chem 19:1951–1970

    Article  Google Scholar 

  • DiFranco M, Quinonez M, Vergara JL (2012) The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers. J Gen Physiol 140:109–137

    Article  Google Scholar 

  • Duff HJ, Offord J, West J, Catterall WA (1992) Class I and IV antiarrhythmic drugs and cytosolic calcium regulate mRNA encoding the sodium channel alpha subunit in rat cardiac muscle. Mol Pharmacol 42:570–574

    CAS  Google Scholar 

  • Edmunds RC, Gill JA, Baldwin DH et al (2015) Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi. Sci Rep 5:17326

    Article  CAS  Google Scholar 

  • Ernst VV, Neff JM, Anderson JW (1977) The effects of the water-soluble fractions of no. 2 fuel oil on the early development of the estuarine fish, Fundulus grandis baird and girard. Environ Pollut 14:25–35

    Article  CAS  Google Scholar 

  • Faggioni M, Knollmann BC (2012) Calsequestrin 2 and arrhythmias. Am J Physiol Heart Circ Physiol 302:H1250–H1260

    Article  CAS  Google Scholar 

  • Fang X, Corrales J, Thornton C, Clerk T, Scheffler BE, Willett KL (2015) Transcriptomic changes in zebrafish embryos and larvae following benzo[a]pyrene exposure. Toxicol Sci 146:395–411

    Article  CAS  Google Scholar 

  • Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614

    Article  CAS  Google Scholar 

  • Galli GLJ, Lipnick MS, Block BA (2009) Effect of thermal acclimation on action potentials and sarcolemmal K+ channels from Pacific bluefin tuna cardiomyocytes. Am J Physiol Regul Integr Comp Physiol 297:R502–R509

    Article  CAS  Google Scholar 

  • Geiger DL, Northcott CE, Brooke LT, Call DJ (eds) (1985) Acute toxicities of organic chemicals to fathead minnows (Pimephales Promelas). University of Wisconsin—Superior

  • Goodale BC, Tilton SC, Corvi MM et al (2013) Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish. Toxicol Appl Pharmacol 272:656–670

    Article  CAS  Google Scholar 

  • Grego-Bessa J, Luna-Zurita L, del Monte G, et al. (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12:415–429

    Article  CAS  Google Scholar 

  • Grimes AC, Erwin KN, Stadt HA et al (2008) PCB126 Exposure disrupts zebrafish ventricular and branchial but not early neural crest development. Toxicol Sci 106:193-205

    Article  CAS  Google Scholar 

  • Hahn ME, Karchner SI, Evans BR, Franks DG, Merson RR, Lapseritis JM (2006) Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. J Exp Zool Comp Exp Biol 305A:693–706

    Article  CAS  Google Scholar 

  • Haverinen J, Vornanen M (2009) Responses of action potential and K + currents to temperature acclimation in fish hearts: phylogeny or thermal preferences? Physiol Biochem Zool 82:468–482

    Article  CAS  Google Scholar 

  • Heintz RA, Short JW, Rice SD (1999) Sensitivity of fish embryos to weathered crude oil: part II. Increased mortality of pink salmon (Oncorhynchus gorbuscha) embryos incubating downstream from weathered Exxon Valdez crude oil. Environ Toxicol Chem 18:494–503

    Article  CAS  Google Scholar 

  • Helder T (1980) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on early life stages of the pike (Esox lucius L.). Sci Total Environ 14:255–264

    Article  CAS  Google Scholar 

  • Helder T (1981) Effects of 2,3,7,8-tetrachlorodibenzo-dioxin (TCDD) on early life stages of rainbow trout (Salmo gairdneri, Richardson). Toxicology 19:101–112

    Article  CAS  Google Scholar 

  • Hicken CE, Linbo TL, Baldwin DH et al (2011) Sub-lethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proc Natl Acad Sci USA 108:7086–7090

    Article  CAS  Google Scholar 

  • Huang J, Elicker J, Bowens N et al (2012) Myocardin regulates BMP10 expression and is required for heart development. J Clin Invest 122:3678–3691

    Article  CAS  Google Scholar 

  • Incardona JP, Scholz NL (2016) The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. Aquat Toxicol 177:515–525

    Article  CAS  Google Scholar 

  • Incardona JP, Collier TK, Scholz NL (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196:191–205

    Article  CAS  Google Scholar 

  • Incardona JP, Carls MG, Teraoka H, Sloan CA, Collier TK, Scholz NL (2005) Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. Environ Health Perspect 113:1755–1762

    Article  CAS  Google Scholar 

  • Incardona JP, Day HL, Collier TK, Scholz NL (2006) Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P450 1A metabolism. Toxicol Appl Pharmacol 217:308–321

    Article  CAS  Google Scholar 

  • Incardona JP, Carls MG, Day HL et al (2009) Cardiac arrhythmia is the primary response of embryonic Pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ Sci Technol 43:201–207

    Article  CAS  Google Scholar 

  • Incardona JP, Linbo TL, Scholz NL (2011) Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicol Appl Pharmacol 257:242–249

    Article  CAS  Google Scholar 

  • Incardona JP, Swarts TL, Edmunds RC et al (2013) Exxon valdez to deepwater horizon: comparable toxicity of both crude oils to fish early life stages. Aquat Toxicol 142–143:303–316

    Article  Google Scholar 

  • Incardona JP, Gardner LD, Linbo TL et al (2014) Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proc Natl Acad Sci USA 111:E1510-E1518

    Article  CAS  Google Scholar 

  • Incardona JP, Carls MG, Holland L et al (2015) Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci Rep 5:13499

    Article  Google Scholar 

  • Jayasundara N, Van Tiem Garner L, Meyer JN, Erwin KN, Di Giulio RT (2015) AHR2-mediated transcriptomic responses underlying the synergistic cardiac developmental toxicity of PAHs. Toxicol Sci 143:469–481

    Article  CAS  Google Scholar 

  • Jenny MJ, Karchner SI, Franks DG, Woodin BR, Stegeman JJ, Hahn ME (2009) Distinct roles of two zebrafish AHR repressors (AHRRa and AHRRb) in embryonic development and regulating the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 110:426–441

    Article  CAS  Google Scholar 

  • Jung J-H, Hicken CE, Boyd D et al (2013) Geologically distinct crude oils cause a common cardiotoxicity syndrome in developing zebrafish. Chemosphere 91:1146–1155

    Article  CAS  Google Scholar 

  • Jung JH, Kim M, Yim UH et al (2015) Differential toxicokinetics determines the sensitivity of two marine embryonic fish exposed to Iranian heavy crude oil. Environ Sci Technol 49:13639–13648

    Article  CAS  Google Scholar 

  • Knape K, Linder T, Wolschann P, Beyer A, Stary-Weinzinger A (2011) In silico analysis of conformational changes induced by mutation of aromatic binding residues: consequences for drug binding in the hERG K + channel. PLoS ONE 6:e28778

    Article  CAS  Google Scholar 

  • Kohle C, Bock KW (2007) Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. Biochem Pharmacol 73:1853–1862

    Article  Google Scholar 

  • Kopf PG, Walker MK (2009) Overview of developmental heart defects by dioxins, PCBs, and Pesticides. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:276–285

    Article  CAS  Google Scholar 

  • Langheinrich U, Vacun G, Wagner T (2003) Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicol Appl Pharmacol 193:370–382

    Article  CAS  Google Scholar 

  • Lanham KA, Plavicki J, Peterson RE, Heideman W (2014) Cardiac myocyte-specific AHR activation phenocopies TCDD-induced toxicity in zebrafish. Toxicol Sci 141:141–154

    Article  CAS  Google Scholar 

  • Leong IU, Skinner JR, Shelling AN, Love DR (2010) Identification and expression analysis of kcnh2 genes in the zebrafish. Biochem Biophys Res Commun 396:817–824

    Article  CAS  Google Scholar 

  • Leoni AL, Marionneau C, Demolombe S et al (2005) Chronic heart rate reduction remodels ion channel transcripts in the mouse sinoatrial node but not in the ventricle. Physiol Genomics 24:4–12

    Article  CAS  Google Scholar 

  • Lewis DFV, Eddershaw PJ, Dickins M, Tarbit MH, Goldfarb PS (1998) Structural determinants of cytochrome P450 substrate specificity, binding affinity and catalytic rate. Chem Biol Interact 115:175–199

    Article  CAS  Google Scholar 

  • Lichtner B, Knaus P, Lehrach H, Adjaye J (2013) BMP10 as a potent inducer of trophoblast differentiation in human embryonic and induced pluripotent stem cells. Biomaterials 34:9789–9802

    Article  CAS  Google Scholar 

  • Linden O (1978) Biological effects of oil on early development of the Baltic herring Clupea harengus membras. Mar Biol 45:273–283

    Article  CAS  Google Scholar 

  • Marty GD, Short JW, Dambach DM et al (1997) Ascites, premature emergence, increased gonadal cell apoptosis, and cytochrome P4501A induction in pink salmon larvae continuously exposed to oil-contaminated gravel during development. Can J Zool Rev Can Zool 75:989–1007

    Article  CAS  Google Scholar 

  • McIntosh S, King T, Wu D, Hodson PV (2010) Toxicity of dispersed weathered crude oil to early life stages of Atlantic herring (Clupea harengus). Environ Toxicol Chem 29:1160–1167

    CAS  Google Scholar 

  • McKim JM, Bradbury SP, Niemi GJ (1987) Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment. Environ Health Perspect 71:171–186

    Article  CAS  Google Scholar 

  • Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107:1355–1358

    Article  Google Scholar 

  • Mitcheson JS (2008) hERG potassium channels and the structural basis of drug-induced arrhythmias. Chem Res Toxicol 21:1005–1010

    Article  CAS  Google Scholar 

  • Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16:251–263

    Article  CAS  Google Scholar 

  • Mu J, Jin F, Ma X, Lin Z, Wang J (2014) Comparative effects of biological and chemical dispersants on the bioavailability and toxicity of crude oil to early life stages of marine medaka (Oryzias melastigma). Environ Toxicol Chem 33:2576–2583

    Article  CAS  Google Scholar 

  • Myers MS, Landahl JT, Krahn MM, McCain BB (1991) Relationships between hepatic neoplasms and related lesions and exposure to toxic chemicals in marine fish from the United States West Coast. Environ Health Perspect 90:7–15

    Article  CAS  Google Scholar 

  • Nebert DW, Dalton TP, Okey AB, Gonzalez FJ (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279:23847–23850

    Article  CAS  Google Scholar 

  • Peterson CH, Rice SD, Short JW et al (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086

    Article  CAS  Google Scholar 

  • Phillips DH (1983) Fifty years of benzo(a)pyrene. Nature 303:468–472

    Article  CAS  Google Scholar 

  • Pollino CA, Holdway DA (2002) Toxicity testing of crude oil and related compounds using early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Ecotox Environ Safe 52:180–189

    Article  CAS  Google Scholar 

  • Prasad JC, Goldstone JV, Camacho CJ, Vajda S, Stegeman JJ (2007) Ensemble modeling of substrate binding to cytochromes p450: analysis of catalytic differences between CYP1A orthologs. Biochemistry 46:2640–2654

    Article  CAS  Google Scholar 

  • Prasch AL, Teraoka H, Carney SA et al (2003) Aryl hydrocarbon receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. Toxicol Sci 76:138–150

    Article  CAS  Google Scholar 

  • Ritchie TJ, Macdonald SJ (2009) The impact of aromatic ring count on compound developability: are too many aromatic rings a liability in drug design? Drug Discov Today 14:1011–1020

    Article  CAS  Google Scholar 

  • Rosati B, McKinnon D (2004) Regulation of ion channel expression. Circ Res 94:874–883

    Article  CAS  Google Scholar 

  • Salkoff L, Baker K, Butler A, Covarrubias M, Pak MD, Wei A (1992) An essential ‘set’ of K + channels conserved in flies, mice and humans. Trends Neurosci 15:161–166

    Article  CAS  Google Scholar 

  • Sanguinetti MC (2010) HERG1 channelopathies. Pflugers Arch 460:265–276

    Article  CAS  Google Scholar 

  • Schmitt N, Grunnet M, Olesen S-P (2014) Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 94:609–653

    Article  CAS  Google Scholar 

  • Scott JA, Incardona JP, Pelkki K, Shepardson S, Hodson PV (2011) AhR2-mediated; CYP1A-independent cardiovascular toxicity in zebrafish (Danio rerio) embryos exposed to retene. Aquat Toxicol 101:165–174

    Article  CAS  Google Scholar 

  • Short JW, Heintz RA (1997) Identification of Exxon Valdez oil in sediments and tissues from Prince William Sound and the Northwestern Gulf of Alaska based on a PAH weathering model. Environ Sci Technol 31:2375–2384

    Article  CAS  Google Scholar 

  • Sørhus E, Edvardsen RB, Karlsen O et al (2015) Unexpected interaction with dispersed crude oil droplets drives severe toxicity in Atlantic haddock embryos. PLoS ONE 10:e0124376

    Article  Google Scholar 

  • Sørhus E, Incardona JP, Karlsen Ø et al (2016) Effects of crude oil on haddock reveal roles for intracellular calcium in craniofacial and cardiac development. Sci Rep 6:31058

    Article  Google Scholar 

  • Sørhus E, Incardona JP, Furmanek T et al (2017) Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. eLife 6:e20707

  • Spehar RL, Poucher S, Brooke LT, Hansen DJ, Champlin D, Cox DA (1999) Comparative toxicity of fluoranthene to freshwater and saltwater species under fluorescent and ultraviolet light. Arch Environ Contam Toxicol 37:496–502

    Article  CAS  Google Scholar 

  • Spitsbergen JM, Walker MK, Olson JR, Peterson RE (1991) Pathologic alterations in early life stages of lake trout salvelinus-namaycush exposed to 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin as fertilized eggs. Aquat Toxicol 19:41–72

    Article  CAS  Google Scholar 

  • Stein JE, Reichert WL, French B, Varanasi U (1993) P-32 postlabeling analysis of DNA adduct formation and persistence in English sole (Pleuronectes vetulus) exposed to benzo[a]pyrene and 7 h-dibenzo[c, g]carbazole. Chem Biol Interact 88:55–69

    Article  CAS  Google Scholar 

  • Tamargo J, Caballero R, Gomez R, Valenzuela C, Delpon E (2004) Pharmacology of cardiac potassium channels. Cardiovasc Res 62:9–33

    Article  CAS  Google Scholar 

  • Tu CT, Yang TC, Tsai HJ (2009) Nkx2.7 and Nkx2.5 function redundantly and are required for cardiac morphogenesis of zebrafish embryos. PLoS ONE 4:e4249

    Article  Google Scholar 

  • Van Tiem LA, Di Giulio RT (2011) AHR2 knockdown prevents PAH-mediated cardiac toxicity and XRE- and ARE-associated gene induction in zebrafish (Danio rerio). Toxicol Appl Pharmacol 254:280–287

    Article  Google Scholar 

  • van Wijk B, Moorman AF, van den Hoff MJ (2007) Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc Res 74:244–255

    Article  Google Scholar 

  • Veith GD, Call DJ, Brooke LT (1983) Structure-toxicity relationships for the fathead minnow, Pimephales promelas: narcotic industrial chemicals. Can J Fish Aquat Sci 40:743–748

    Article  CAS  Google Scholar 

  • Waits ER, Nebert DW (2011) Genetic architecture of susceptibility to PCB126-induced developmental cardiotoxicity in zebrafish. Toxicol Sci 122:466–475

    Article  CAS  Google Scholar 

  • Wamhoff BR, Bowles DK, Owens GK (2006) Excitation–transcription coupling in arterial smooth muscle. Circ Res 98:868–878

    Article  CAS  Google Scholar 

  • Wang Z, Stout SA, Fingas M (2006) Forensic fingerprinting of biomarkers for oil spill characterization and source identification. Environ Forensics 7:105–146

    Article  CAS  Google Scholar 

  • Weir CJ (2006) The molecular mechanisms of general anaesthesia: dissecting the GABAA receptor. Contin Educ Anaesth Crit Care Pain 6:49–53

    Article  Google Scholar 

  • Wilke RA, Lin DW, Roden DM et al (2007) Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 6:904–916

    Article  CAS  Google Scholar 

  • Wozney JM, Rosen V, Celeste AJ et al (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  CAS  Google Scholar 

  • Xu EG, Mager EM, Grosell M et al (2016) Time- and oil-dependent transcriptomic and physiological responses to deepwater horizon oil in Mahi-Mahi (Coryphaena hippurus) Embryos and Larvae. Environ Sci Technol 50:7842–7851

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the many past and current team members of the research group for their hard work and dedication, collaborators past and present for their spirited and productive interactions, and three anonymous reviewers for their thoughtful critiques of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Incardona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Incardona, J.P. Molecular Mechanisms of Crude Oil Developmental Toxicity in Fish. Arch Environ Contam Toxicol 73, 19–32 (2017). https://doi.org/10.1007/s00244-017-0381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-017-0381-1

Navigation