Skip to main content
Log in

Investigation of 10 Herbicides in Surface Waters of a Horticultural Production Catchment in Southeastern Australia

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Herbicides are regularly applied in horticultural production systems and may migrate off-site, potentially posing an ecological risk to surface waterways. However, few studies have investigated the levels and potential ecotoxicological impact of herbicides in horticultural catchments in southern Australia. This study investigated the presence of 10 herbicides at 18 sites during a 5-month period in horticulturally important areas of the Yarra Valley in southeastern Australia. Seven of the 10 herbicides were detected in the streams, in 39 % of spot water samples, in 25 % of surface sediment samples, and in >70 % of the passive sampler systems deployed. Few samples contained residues of ≥2 herbicides. Simazine was the herbicide most frequently detected in water, sediment, and passive sampler samples and had the highest concentrations in water (0.67 μg/L) and sediment (260 μg/kg dry weight). Generally the concentrations of the herbicides detected were several orders of magnitude lower than reported ecotoxicological effect values, including those for aquatic plants and algae, suggesting that concentrations of individual chemicals in the catchment were unlikely to pose an ecological risk. However, little is known about the combined effects of simultaneous, low-level exposure of multiple herbicides of the same mode of action on Australian aquatic organisms nor their contribution when found in mixtures with other pesticides. Further research is required to adequately assess the risk of pesticides in Victorian aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • American Public Health Association (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, American Waterworks Association, Washington, DC

    Google Scholar 

  • Anderson TA, Salice CJ, Erickson RA, McMurry ST, Cox SB, Smith LM (2013) Effects of land use and precipitation on pesticides and water quality in playa lakes of the southern high plains. Chemosphere 92:84–90

    Article  CAS  Google Scholar 

  • Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand (2000) Australian and New Zealand guidelines for fresh and marine water quality. ANZECC/ARMCANZ, Canberra

    Google Scholar 

  • Australian Pesticides and Veterinary Medicines Authority (2012) Pesticide and veterinary medicines product sales 2010–2011 financial year. Commonwealth of Australia Gazette No APVMA 4, 28 Feb 2012

  • Baas J, Jager T, Kooijman SALM (2009) A model to analyze effects of complex mixtures on survival. Ecotoxicol Environ Safe 72:669–676

    Article  CAS  Google Scholar 

  • Bainbridge ZT, Brodie JE, Faithful JW, Sydes DA, Lewis SE (2009) Identifying the land-based sources of suspended sediments, nutrients and pesticides discharged to the Great Barrier Reef from the Tully-Murray Basin, Queensland, Australia. Mar Freshw Res 60:1081–1090

    Article  CAS  Google Scholar 

  • Bartelt-Hunt SL, Snow DD, Damon-Powell T, Brown DL, Prasai G, Schwarz M et al (2011) Quantitative evaluation of laboratory uptake rates for pesticides, pharmaceuticals, and steroid hormones using POCIS. Environ Toxicol Chem 30(6):1412–1420

    Article  CAS  Google Scholar 

  • Battaglin WA, Rice KC, Focazio MJ, Salmons S, Barry RX (2009) The occurrence of glyphosate, atrazine, and other pesticides in vernal pools and adjacent streams in Washington, DC, Maryland, Iowa, and Wyoming 2005–2006. Environ Monit Assess 155:281–307

    Article  CAS  Google Scholar 

  • Belden JB, Hanson BR, McMurry ST, Smith LM, Haukos DA (2012) Assessment of the effects of farming and conservation programs on pesticide deposition in High Plains wetlands. Environ Sci Technol 46:3424–3432

    Article  CAS  Google Scholar 

  • Bengston Nash SM, Goddard J, Müller JF (2006) Phytotoxicity of surface waters of the Thames and Brisbane River Estuaries: a combined chemical analysis and bioassay approach for the comparison of two systems. Biosens Bioelectron 21:2086–2093

    Article  Google Scholar 

  • Bonansea RI, Amé MV, Wunderlin DA (2013) Determination of priority pesticides in water samples combining SPE and SPME coupled to GC–MS. A case study: Suquía River basin (Argentina). Chemosphere 90:1860–1869

    Article  CAS  Google Scholar 

  • Bowmer KH, Korth W, Scott A, McCorkelle G, Thomas M (1998) Pesticide monitoring in the irrigation areas of south-western NSW 1990–1995. Technical Report 17/98. Commonwealth Scientific and Industrial Research Organisation Land and Water, Australia

  • Bureau of Meteorology (2010) Climate data online. Bureau of Meteorology, Commonwealth of Australia

  • Byer JD, Struger J, Sverko E, Klawunn P, Todd A (2011) Spatial and seasonal variations in atrazine and metolachlor surface water concentrations in Ontario (Canada) using ELISA. Chemosphere 82:1155–1160

    Article  CAS  Google Scholar 

  • Chapman RN, Stranger JW (1993) Horticultural pesticide residues in water: a survey of pesticides conducted in the Mitchell Valley, Victoria 1992/1993. Victorian Department of Agriculture, Melbourne

    Google Scholar 

  • Chapman RN, Stranger JW (1994) Horticultural pesticide residues in water: a survey of pesticide residues conducted in Gippsland Victoria 1994. Victorian Department of Agriculture, Melbourne

    Google Scholar 

  • Davies PE, Cook LSJ, Barton JL (1994) Triazine herbicide contamination of Tasmanian streams: sources, concentrations and effects on biota. Aust J Mar Freshw Res 45:209–226

    Article  CAS  Google Scholar 

  • Devault DA, Delmotte S, Merlina G, Lim P, Gérino M, Pinelli E (2009a) Influence of in situ biological activity on the vertical profile of pre-emergence herbicides in sediment. J Environ Monit 11:1206–1215

    Article  CAS  Google Scholar 

  • Devault DA, Gérino M, Laplanche C, Julien F, Winterton P, Merlina G et al (2009b) Herbicide accumulation and evolution in reservoir sediments. Sci Total Environ 407:2659–2665

    Article  CAS  Google Scholar 

  • Duke NC, Bell AM, Pederson DK, Roelfsema CM, Bengtson Nash S (2005) Herbicides implicated as the cause of severe mangrove dieback in the Mackay region, NE Australia: consequences for marine plant habitats of the GBR World Heritage Area. Mar Pollut Bull 51:308–324

    Article  CAS  Google Scholar 

  • El-Shenawy NS, Nabil ZI, Abdel-Nabi IM, Greenwood R (2010) Comparing the passive and active sampling devices with biomonitoring of pollutants in Langstone and Portsmouth Harbour, UK. J Environ Sci Technol 3(1):1–17

    Article  CAS  Google Scholar 

  • Emelogu ES, Pollard P, Robinson CD, Webster L, McKenzie C, Napier F et al (2013) Identification of selected organic contaminants in streams associated with agricultural activities and comparison between autosampling and silicone rubber passive sampling. Sci Total Environ 445–446:261–272

    Article  Google Scholar 

  • Ensminger MP, Budd R, Kelley KC, Goh KS (2013) Pesticide occurrence and aquatic benchmark exceedances in urban surface waters and sediments in three urban areas of California, USA 2008–2011. Environ Monit Assess 185(5):3697–3710

    Article  CAS  Google Scholar 

  • Escher BI, Quayle P, Muller R, Schreiber U, Mueller JF (2006) Passive sampling of herbicides combined with effect analysis in algae using a novel high-throughput phytotoxicity assay (Maxi-Imaging-PAM). J Environ Monit 8:456–464

    Article  CAS  Google Scholar 

  • Fernández-Gómez C, López-López JA, Matamoros V, Díez S, García-Vargas M, Moreno C (2013) Atmospheric influence on the distribution of organic pollutants in the Guadalquivir River estuary, SW Spain. Environ Monit Assess 185:3209–3218

    Article  Google Scholar 

  • Freitas LL, Sant’Anna ES, Suchara EA, Benato VS, Carasek E (2012) Pendimethalin in surface waters of rivers in the proximity of irrigated paddy fields by solid phase microextraction and gas chromatography. Int J Environ Anal Chem 92(3):313–323

    Article  CAS  Google Scholar 

  • Gagnon B, Marcoux G, Leduc R, Pouet M-F, Thomas O (2007) Emerging tools and sustainability of water-quality monitoring, TrAC. Trends Anal Chem 26:308–314

    Article  CAS  Google Scholar 

  • Garcia-Ac A, Segura PA, Viglino L, Fürtös A, Gagnon C, Prévost M et al (2009) On-line solid-phase extraction of large-volume injections coupled to liquid chromatography-tandem mass spectrometry for the quantitation and confirmation of 14 selected trace organic contaminants in drinking and surface water. J Chromatogr A 1216:8518–8527

    Article  CAS  Google Scholar 

  • Gillom RJ, Barbash JE, Crawford CG, Hamilton PA, Martin JD, Nakagaki N, et al. (2006) The quality of our nation’s waters—pesticides in the nation’s streams and groundwater 1992–2001. United States Geological Survey Circular 1291. USGS, Reston

  • Gregoire C, Payraudeau S, Domange N (2010) Use and fate of 17 pesticides applied on a vineyard catchment. Int J Environ Anal Chem 90:406–420

    Article  CAS  Google Scholar 

  • Gunold R, Schäfer RB, Paschke A, Schüürmann G, Liess M (2008) Calibration of the Chemcatcher™ passive sampler for monitoring selected polar and semi-polar pesticides in surface water. Environ Pollut 155:52–60

    Article  CAS  Google Scholar 

  • Hermosin MC, Calderon MJ, Real M, Cornejo J (2013) Impact of herbicides used in olive groves on waters of the Guadalquivir river basin (southern Spain). Agric Ecosyst Environ 164:229–243

    Article  CAS  Google Scholar 

  • Hladik M, Domagalski JL, Kuivila KM (2009) Concentrations and loads of suspended sediment-associated pesticides in the San Joaquin River, California and tributaries during storm events. Sci Total Environ 408:356–364

    Article  CAS  Google Scholar 

  • Hyne RV, Aistrope M (2008) Calibration and field application of a solvent-based cellulose membrane passive sampling device for the monitoring of polar herbicides. Chemosphere 71:611–620

    Article  CAS  Google Scholar 

  • Ibrahim I, Togola A, Gonzalez C (2013) In-situ calibration of POCIS for the sampling of polar pesticides and metabolites in surface water. Talanta 116:495–500

    Article  CAS  Google Scholar 

  • Interstate Technology and Regulatory Council (2006) Technology overview of passive sampler technologies. DSP-4. ITRC, Authoring Team, Washington, DC. http://www.itrcweb.org/Guidance/ListDocuments?TopicID=17&SubTopicID=27. Accessed 12 April 2014

  • Knight SS, Lizotte RE, Moore MT, Smith S, Shields FD (2009) Mississippi Oxbow Lake sediment quality during an artificial flood. Bull Environ Contam Toxicol 82:496–500

    Article  CAS  Google Scholar 

  • Köck M, Farré M, Martínez E, Gajda-Schrantz K, Ginebreda A, Navarro A et al (2010) Integrated ecotoxicological and chemical approach for the assessment of pesticide pollution in the Ebro River delta (Spain). J Hydrol 383:73–82

    Article  Google Scholar 

  • Köck-Schulmeyer M, Ginebreda A, Postigo C, López-Serna R, Pérez S, Brix R et al (2011) Wastewater reuse in Mediterranean semi-arid areas: the impact of discharges of tertiary treated sewage on the load of polar micro pollutants in the Llobregat river (NE Spain). Chemosphere 82:670–678

    Article  Google Scholar 

  • Köck-Schulmeyer M, Ginebreda A, González S, Cortina JL, López de Alda M, Barceló D (2012) Analysis of the occurrence and risk assessment of polar pesticides in the Llobregat River Basin (NE Spain). Chemosphere 86:8–16

    Article  Google Scholar 

  • Kolpin DW, Blazer VS, Gray JL, Focazio MJ, Young JA, Alvarez DA et al (2013) Chemical contaminants in water and sediment near fish nesting sites in the Potomac River basin: determining potential exposures to smallmouth bass (Micropterus dolomieu). Sci Total Environ 443:700–716

    Article  CAS  Google Scholar 

  • Kouzayha A, Al Ashi A, Al Akoum R, Al Iskandarani M, Budzinski H, Jaber F (2013) Occurrence of pesticide residues in Lebanon’s water resources. Bull Environ Contam Toxicol 91:503–509

    Article  CAS  Google Scholar 

  • Kumar B, Gaur R, Goel G, Mishra M, Prakash D, Singh SK et al (2011) Distribution of pesticides in sediments from municipal drains in Delhi, India. Asian J Sci Res 4(3):271–280

    CAS  Google Scholar 

  • Kurt-Karakus PB, Muir DCG, Bidleman TF, Small J, Backus S, Dove A (2010) Metolachlor and atrazine in the Great Lakes. Environ Sci Technol 44:4678–4684

    Article  CAS  Google Scholar 

  • Kurt-Karakus PB, Teixeira C, Small J, Muir D, Bidleman TF (2011) Current-use pesticides in inland lake waters, precipitation, and air from Ontario, Canada. Environ Toxicol Chem 30(7):1539–1548

    Article  CAS  Google Scholar 

  • Lavado R, Loyo-Rosales JE, Floyd E, Kolodziej EP, Snyder SA, Sedlak DL et al (2009) Site-specific profiles of estrogenic activity in agricultural areas of California’s inland waters. Environ Sci Technol 43:9110–9116

    Article  CAS  Google Scholar 

  • Leonard AW, Hyne RV, Pablo F (2002) Trimethylpentane-containing passive samplers for predicting time-integrated concentrations of pesticides in water: laboratory and field studies. Environ Toxicol Chem 21:2591–2599

    Article  CAS  Google Scholar 

  • Lewis SE, Brodie JE, Bainbridge ZT, Rohde KW, Davis AM, Masters BL et al (2009) Herbicides: a new threat to the Great Barrier Reef. Environ Pollut 157:2470–2484

    Article  CAS  Google Scholar 

  • Lissalde S, Mazzella N, Fauvelle V, Delmas F, Mazellier P, Legube B (2011) Liquid chromatography coupled with tandem mass spectrometry method for thirty-three pesticides in natural water and comparison of performance between classical solid phase extraction and passive sampling approaches. J Chromatogr A 1218:1492–1502

    Article  CAS  Google Scholar 

  • Lizotte RE Jr, Knight SS, Bryant CT (2010) Sediment quality assessment of Beasley Lake: bioaccumulation and effects of pesticides in Hyalella Azteca. Chem Ecol 26(6):411–424

    Article  CAS  Google Scholar 

  • Magnusson M, Heimann K, Ridd M, Negri AP (2013) Pesticide contamination and phytotoxicity of sediment interstitial water to tropical benthic microalgae. Water Res 47:5211–5221

    Article  CAS  Google Scholar 

  • Maqbool U, Jamil QM, Ul-Haq A (2008) Comparison of in-house-developed ELISA with HPLC techniques for the analysis of atrazine residues. J Environ Sci Health B 43(3):230–2240

    Article  Google Scholar 

  • Martínez Bueno MJ, Hernando MD, Agüera A, Fernández-Alba AR (2009) Application of passive sampling devices for screening of micro-pollutants in marine aquaculture using LC–MS/MS. Talanta 77:1518–1527

    Article  Google Scholar 

  • Matamoros V, Jover E, Bayona JM (2010) Part-per-trillion determination of pharmaceuticals, pesticides, and related organic contaminants in river water by solid-phase extraction followed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Anal Chem 82:699–706

    Article  CAS  Google Scholar 

  • Mazzella N, Lissalde S, Moreira S, Delmas F, Mazellier P, Huckins JN (2010) Evaluation of the use of performance reference compounds in an Oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater. Environ Sci Technol 44:171–1713

    Article  Google Scholar 

  • McMahon K, Bengston Nash S, Eaglesham G, Müller JF, Duke NC, Winderlich S (2005) Herbicide contamination and the potential impact to seagrass meadows in Hervey Bay, Queensland, Australia. Mar Pollut Bull 51:325–334

    Article  CAS  Google Scholar 

  • Meyer B, Pailler J-Y, Guignard C, Hoffmann L, Krein A (2011) Concentrations of dissolved herbicides and pharmaceuticals in a small river in Luxembourg. Environ Monit Assess 180:127–146

    Article  CAS  Google Scholar 

  • Mitchell C, Brodie J, White I (2005) Sediments, nutrients and pesticide residues in event flow conditions in streams of the Mackay Whitsunday Region, Australia. Mar Pollut Bull 51:23–36

    Article  CAS  Google Scholar 

  • Muendo BM, Lalah JO, Getenga ZM (2011) Behavior of pesticide residues in agricultural soil and adjacent River Kuywa sediment and water samples from Nzoia sugarcane belt in Kenya. Environmentalist 32:433–444

    Article  Google Scholar 

  • Muller R, Schreiber U, Escher BI, Quayle P, Bengston Nash SM, Mueller JF (2008) Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Sci Total Environ 401:51–59

    Article  CAS  Google Scholar 

  • Muschal M, Warne MSTJ (2003) Risk posed by pesticides to aquatic organisms in rivers of northern inland New South Wales, Australia. Hum Ecol Risk Assess 9:1765–1787

    Article  CAS  Google Scholar 

  • Nödler K, Licha T, Bester K, Sauter M (2010) Development of a multi-residue analytical method, based on liquid chromatography–tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples. J Chromatogr A 1217:6511–6521

    Article  Google Scholar 

  • Noppe H, Ghekiere A, Verslycke T, De Wulf E, Verheyden K, Monteyne E et al (2007) Distribution and ecotoxicity of chlorotriazines in the Scheldt Estuary (B-Nl). Environ Pollut 147:668–676

    Article  CAS  Google Scholar 

  • Nørgaard K, Cedergreen N (2010) Pesticide cocktails can interact synergistically on aquatic crustaceans. Environ Sci Pollut Res 17:957–967

    Article  Google Scholar 

  • O’Brien D, Bartkow M, Mueller JF (2011) Determination of deployment specific chemical uptake rates for SDB-RPD Empore disk using a passive flow monitor (PFM). Chemosphere 83:1290–1295

    Article  Google Scholar 

  • Pesce S, Morin S, Lissalde S, Montuelle B, Mazzella N (2011) Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms. Environ Pollut 159:735–741

    Article  CAS  Google Scholar 

  • Pfeuffer RJ (2011) South Florida Water Management District ambient pesticide monitoring network: 1992–2007. Environ Monit Assess 182:485–508

    Article  CAS  Google Scholar 

  • Phong TK, Yoshino K, Hiramatsu K, Harada M, Inoue T (2010) Pesticide discharge and water management in a paddy catchment in Japan. Paddy Water Environ 8:361–369

    Article  Google Scholar 

  • Polard T, Jean S, Gauthier L, Laplanche C, Merlina G, Sánchez-Pérez J et al (2011) Mutagenic impact on fish of run off events in agricultural areas in south-west France. Aquatic Toxicol 101(1):126–134

    Article  CAS  Google Scholar 

  • Radcliffe JC (2002) Pesticide use in Australia: a review undertaken by the Australian Academy of Technological Sciences and Engineering. Australian Academy of Technological Sciences and Engineering, Melbourne

    Google Scholar 

  • Rayment GE, Lyons DJ (2011) Soil chemical methods: Australasia. CSIRO, Melbourne

    Google Scholar 

  • Ricart M, Guasch H, Barceló D, Brix R, Conceição MH, Geiszinger A et al (2010) Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities. J Hydrol 383:52–61

    Article  CAS  Google Scholar 

  • Rose G, Kibria G (2007) Pesticide and heavy and metal residues in Goulburn-Murray irrigation water 2004-06. Aust J Ecotoxicol 13:65–79

    CAS  Google Scholar 

  • Sangchan W, Hugenschmidt C, Ingrwersen J, Schwadorf K, Thavornyutikarn P, Pansombat K et al (2012) Short-term dynamics of pesticide concentrations and loads in a river of an agricultural watershed in the outer tropics. Agric Ecosyst Environ 158:1–14

    Article  CAS  Google Scholar 

  • Shaw M, Eaglesham G, Mueller JF (2009) Uptake and release of polar compounds in SDB-RPS Empore™ disks: implications for their use as passive samplers. Chemosphere 75:1–7

    Article  CAS  Google Scholar 

  • Shaw M, Furnas MJ, Fabricius K, Haynes D, Carter S, Eaglesham G, Mueller JF (2010) Monitoring pesticides in the Great Barrier Reef. Mar Pollut Bull 60:113–122

    Article  CAS  Google Scholar 

  • Shaw M, Mueller JF (2005) Preliminary evaluation of the occurrence of herbicides and PAHs in the Wet Tropics region of the Great Barrier Reef, Australia, using passive samplers. Mar Pollut Bull 51:876–881

  • Silva E, Batista S, Caetano L, Cerejeira MJ, Chaves M, Jacobsen S-E (2011) Integrated approach for the quality assessment of freshwater resources in a vineyard area (South Portugal). Environ Monit Assess 176(1–4):331–341

    Article  CAS  Google Scholar 

  • Smiley PC Jr, Gillespie RB, King KW, Huang C (2009) Management implications of the relationships between water chemistry and fishes within channelized headwater streams in the midwestern United States. Ecohydrology 2:294–302

    Article  CAS  Google Scholar 

  • St. George T, Vlahos P, Harner T, Helm P, Wilford B (2011) A rapidly equilibrating, thin film, passive water sampler for organic contaminants: characterization and field testing. Environ Pollut 159:481–486

    Article  CAS  Google Scholar 

  • Stephens BS, Kapernick AP, Eaglesham G, Mueller JF (2009) Event monitoring of herbicides with naked and membrane-covered Empore disk integrative passive sampling devices. Mar Pollut Bull 58:1116–1122

    Article  CAS  Google Scholar 

  • Sun X, Zhou Q, Wang Y, Ren W (2013) Influence of hydro-geomorphology, land-use and riparian zone characteristics on herbicide occurrence and distribution in sediments in Songhua River Basin, northeastern China. Geoderma 193–194:156–164

    Article  Google Scholar 

  • Taghavi L, Probst J-L, Merlina G, Marchand A-L, Durbe G, Probst A (2010) Flood event impact on pesticide transfer in a small agricultural catchment (Montoussé at Auradé, south west France). Int J Environ Anal Chem 90(3):390–405

    Article  CAS  Google Scholar 

  • Taghavi L, Merlina G, Probst J-L (2011) The role of storm flows in concentration of pesticides associated with particulate and dissolved fractions as a threat to aquatic ecosystems. Case study: the agricultural watershed of Save River (Southwest of France). Knowl Manag Aquat Ecosyst 400(6):1–11

    Google Scholar 

  • Thitiphuree T, Kitana J, Varanusupakul P, Kitana N (2013) Atrazine contamination and potential health effects on freshwater mussel Uniandra contradens living in agricultural catchment in Nan Province, Thailand. Environ Asia 6(1):13–18

    Google Scholar 

  • Thomatou A–A, Zacharias I, Hela D, Konstantinou I (2013) Determination and risk assessment of pesticide residues in lake Amvrakia (W. Greece) after agricultural land use changes in the lake’s drainage basin. Int J Environ Anal Chem 93(7):780–799

    Article  CAS  Google Scholar 

  • Tran ATK, Hyne RV, Doble P (2007) Calibration of a passive sampling device for time-integrated sampling of hydrophilic herbicides in aquatic environments. Environ Toxicol 26(3):435–443

    Article  CAS  Google Scholar 

  • University of Hertfordshire (2013). The Pesticide Properties DataBase (PPDB) developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire 2006–2013. http://sitem.herts.ac.uk/aeru/iupac/index.htm. Accessed 18 Mar 2014

  • Vermeirssen ELM, Bramaz N, Hollender J, Singer H, Escher BI (2009) Passive sampling combined with ecotoxicological and chemical analysis of pharmaceuticals and biocides: evaluation of three Chemcatcher™ configurations. Water Res 43:903–914

    Article  CAS  Google Scholar 

  • Vogel JR, Linard JI (2011) Agricultural herbicide transport in a first-order intermittent stream, Nebraska, USA. Appl Eng Agric 27(1):63–74

    Article  Google Scholar 

  • Vryzas Z, Vassiliou G, Alexoudis C, Papadopoulou-Mourkidou E (2009) Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Res 43:1–10

    Article  CAS  Google Scholar 

  • Wan MT, Kuo J, McPherson B, Pasternak J (2006) Triazine and metolachlor herbicide residues in farm areas of the Lower Fraser Valley, British Columbia, Canada. J Environ Sci Health B 41:855–867

    Article  CAS  Google Scholar 

  • Whitall D, Hively WD, Leight AK, Hapeman CJ, McConnell LL, Fisher T et al (2010) Pollutant fate and spatio-temporal variability in the Choptank River estuary: factors influencing water quality. Sci Total Environ 408:2096–2108

    Article  CAS  Google Scholar 

  • Wightwick A, Allinson G (2007) Pesticide residues in Victorian waterways: a review. Aus J Ecotoxicol 13:91–112

    CAS  Google Scholar 

  • Wightwick A, Allinson G (2008) Compilation of agrochemicals registered for use in Victoria and their physical-chemical properties. Department of Primary Industries, Victoria, Australia. http://vro.depi.vic.gov.au/dpi/vro/vrosite.nsf/pages/lwm_farmwater_agrochemical_pdf/$FILE/Comp_agrochemicals_reg_Victoria.pdf. Accessed 14 June 2014

  • Wightwick A, Bui A, Zhang P, Rose G, Allinson M, Myers J et al (2012) Investigation of 25 fungicides in surface waters of a horticultural production catchment in south-eastern Australia. Arch Environ Contam Toxicol 62:380–390

    Article  CAS  Google Scholar 

  • Wightwick A, Croatto G, Reichman SM, Menzies NW, Pettigrove V, Allinson G (2013) Horticultural use of copper-based fungicides has not increased copper concentrations in sediments in the mid- and upper Yarra Valley. Water Air Soil Pollut 224(12):1701

    Article  Google Scholar 

  • Woudneh MB, Ou Z, Sekela M, Tuominen T, Gledhill M (2009) Pesticide multiresidues in waters of the Lower Fraser Valley, British Columbia, Canada. Part II surface water. J Environ Qual 38:940–947

    Article  CAS  Google Scholar 

  • Xing Z, Chow L, Rees H, Meng F, Li S, Ernst B et al (2013) Influences of sampling methodologies on pesticide-residue detection in stream water. Arch Environ Contam Toxicol 64:208–218

    Article  CAS  Google Scholar 

  • Yu Z, Qin Z, Ji H, Du X, Chen Y, Pan P et al (2010) Application of SPE using multi-walled carbon nanotubes as adsorbent and rapid resolution LC–MS/MS for the simultaneous determination of 11 triazine herbicides residues in river water. Chromatographia 72(11–12):1073–1108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was primarily supported by Melbourne Water and the Department of Primary Industries Victoria (DPI) Australia Future Farming Systems Research Key Project FF104 Accountable Agriculture (Projects MIS No. 06889 and 08162) with additional support from the Centre for Aquatic Pollution Identification and Management (CAPIM). We also acknowledge Simon Phelan, David Allen, Davorka Tucman, and Debra Gill (DPI, Werribee) for assistance with sample analysis and passive-sampler sampling rates experiments as well as staff from the University of Melbourne for their help with field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Allinson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allinson, G., Bui, A., Zhang, P. et al. Investigation of 10 Herbicides in Surface Waters of a Horticultural Production Catchment in Southeastern Australia. Arch Environ Contam Toxicol 67, 358–373 (2014). https://doi.org/10.1007/s00244-014-0049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0049-z

Keywords

Navigation