Skip to main content

Advertisement

Log in

Endosulfan Effects on Rana dalmatina Tadpoles: Quantitative Developmental and Behavioural Analysis

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Endosulfan is an organochlorine pesticide that was recently labeled as a persistent organic pollutant, but it is still widely employed, particularly in developing countries. The goal of this study is to evaluate the acute (LC50) and chronic effects (developmental and behavioural traits) of this insecticide on Rana dalmatina tadpoles after exposure to ecologically relevant concentrations (0.005, 0.01, and 0.05 mg/L) by applying video-tracking techniques to evaluate the quantitative effect of endosulfan on amphibian behavioural patterns. The 96 h LC50 value was 0.074 mg endosulfan/L. Tadpoles chronically exposed to 0.01 and 0.05 mg endosulfan/L underwent high mortality rate, decreased larval growth, delayed development, and increased incidence of malformations, and they did not reach metamorphosis by the end of the experiment. Moreover, tadpoles exposed to these concentrations exhibited several abnormalities in swimming patterns, such as shorter distance moved, swirling, resting, and unusual use of space. The exposure to 0.005 mg endosulfan/L did not cause any significant effects on behaviour, larval growth, or development, but we observed a significant decrease in both survival and time to metamorphosis. We showed that developmental abnormalities are dose-dependent and that the pesticide effects could differ depending on the endosulfan concentration and the species tested. We also validated the hypothesis that behavioural analysis, along with the use of new analytical methods, could be a useful tool in amphibian ecotoxicological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altwegg R, Reyer HU (2003) Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57:872–882

    Google Scholar 

  • American Society for Testing and Materials (1997) Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians. American Society for Testing and Materials Standards, Philadelphia, pp E729–E790

    Google Scholar 

  • Ballesteros ML, Durando PE, Nores ML, Díaz MP, Bistoni MA, Wunderlin DA (2009) Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Environ Pollut 157:1573–1580

    Article  CAS  Google Scholar 

  • Bernabò I, Brunelli E, Berg C, Bonacci A, Tripepi S (2008) Endosulfan acute toxicity in Bufo bufo gills: ultrastructural changes and nitric oxide synthase localization. Aquat Toxicol 86:447–456

    Article  Google Scholar 

  • Bernabò I, Gallo L, Sperone E, Tripepi S, Brunelli E (2011a) Survival, development, and gonadal differentiation in Rana dalmatina chronically exposed to chlorpyrifos. J Exp Zool A Ecol Genet Physiol 315:314–327

    Article  Google Scholar 

  • Bernabò I, Sperone E, Tripepi S, Brunelli E (2011b) Toxicity of chlorpyrifos to larval Rana dalmatina: acute and chronic effects on survival, development, growth and gill apparatus. Arch Environ Contam Toxicol 61:704–718

    Article  Google Scholar 

  • Berrill M, Coulson D, McGillivray L, Pauli B (1998) Toxicity of endosulfan to aquatic stages of anuran amphibians. Environ Toxicol Chem 17:1738–1744

    Article  CAS  Google Scholar 

  • Beyger L, Orrego R, Guchardi J, Holdway D (2012) The acute and chronic effects of endosulfan pulse-exposure on Jordanella floridae (Florida flagfish) over one complete life-cycle. Ecotoxicol Environ Saf 76:71–78

    Article  CAS  Google Scholar 

  • Boone MD, Semlitsch RD (2002) Interactions of an insecticide with competition and pond drying in amphibian communities. Ecol Appl 12:307–316

    Article  Google Scholar 

  • Bridges CM (2000) Long-term effects of pesticide exposure at various life stages of the Southern Leopard Frog (Rana sphenocephala). Arch Environ Contam Toxicol 39:91–96

    Article  CAS  Google Scholar 

  • Bridges CM, Semlitsch RD (2000) Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline. Conserv Biol 14:1490–1499

    Article  Google Scholar 

  • Broomhall S (2002) The effects of endosulfan and variable water temperature on survivorship and subsequent vulnerability to predation in Litoria citropa tadpoles. Aquat Toxicol 61:243–250

    Article  CAS  Google Scholar 

  • Broomhall S (2004) Egg temperature modifies predator avoidance and the effects of the insecticide endosulfan on tadpoles of an Australian frog. J Appl Ecol 41:105–113

    Article  Google Scholar 

  • Broomhall SD (2005) Measuring chemicals impacts on amphibians: ecotoxicity and behavioural data in governmental regulation. Appl Herpetol 2:259–285

    Article  Google Scholar 

  • Broomhall S, Shine R (2003) Effects of the insecticide endosulfan and presence of congeneric tadpoles on Australian treefrog (Litoria freycineti) tadpoles. Arch Environ Contam Toxicol 45:221–226

    Article  CAS  Google Scholar 

  • Brunelli E, Bernabo I, Berg C, Lundstedt-Enkel K, Bonacci A, Tripepsi S (2009) Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles. Aquat Toxicol 91:135–142

    Article  CAS  Google Scholar 

  • Brunelli E, Bernabo I, Sperone E, Tripepi S (2010) Gill alterations as biomarkers of chronic exposure to endosulfan in Bufo bufo tadpoles. Histol Histopathol 25:1519–1529

    CAS  Google Scholar 

  • Carriger JF, Rand GM (2008) Aquatic risk assessment of pesticides in surface waters in and adjacent to the Everglades and Biscayne National Parks: I. Hazard assessment and problem formulation. Ecotoxicology 17:660–679

    Article  CAS  Google Scholar 

  • Dalvie MA, Cairncross E, Solomon A, London L (2003) Contamination of rural surface and groundwater by endosulfan in farming areas of the Western Cape, South Africa. Environ Health 2:1

    Article  Google Scholar 

  • Denoël M, Bichot M, Ficetola GF, Delcourt J, Ylieff MY, Kestemont P et al (2010) Cumulative effects of a road de-icing salt on amphibian behavior. Aquat Toxicol 99:275–280

    Article  Google Scholar 

  • Denoël M, D’Hooghe B, Ficetola GF, Brasseur C, De Pauw E, Thomé JP et al (2012) Using sets of behavioral biomarkers to assess short-term effects of pesticide: a study case with endosulfan on frog tadpoles. Ecotoxicology 21:1240–1250

    Article  Google Scholar 

  • Eddins D, Cerutti D, Williams P, Linney E, Levin ED (2010) Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol Teratol 32:99–108

    Article  CAS  Google Scholar 

  • Ernst WR, Doe JK, Julien G, Hennigar P (1991) Toxicity to aquatic organisms of off-target deposition of endosulfan applied by aircraft. Environ Toxicol Chem 10:103–114

    Article  CAS  Google Scholar 

  • Ezemonye L, Tongo I (2010a) Acute toxic effects of endosulfan and diazinon pesticides on adult amphibians (Bufo regularis). J Environ Chem Ecotoxicol 2:73–78

    Google Scholar 

  • Ezemonye L, Tongo I (2010b) Sublethal effects of endosulfan and diazinon pesticides on glutathione-S-transferase (GST) in various tissues of adult amphibians (Bufo regularis). Chemosphere 81:214–217

    Article  CAS  Google Scholar 

  • Ezemonye L, Ikpesu TO, Tongo I (2009) Distribution of endosulfan in water, sediment and fish from Warri river, Niger delta, Nigeria. Afr J Ecol 48:248–254

    Article  Google Scholar 

  • Finney DJ (1971) Probit analysis, vol 3. Cambridge University Press, New York, p 668

    Google Scholar 

  • Gopal K, Khanna RN, Anand M, Gupta GSD (1981) The acute toxicity of endosulfan to freshwater organism. Toxicol Lett 7:453–456

    Article  CAS  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetetology 16:183–190

    Google Scholar 

  • Greulich K, Pflugmacher S (2003) Differences in susceptibility of various life stages of amphibians to pesticide exposure. Aquat Toxicol 65:329–336

    Article  CAS  Google Scholar 

  • Harris ML (2000) Species- and age-related differences in susceptibility to pesticide exposure for two amphibians, Rana pipiens, and Bufo americanus. Bull Environ Contam Toxicol 64:263–270

    Article  CAS  Google Scholar 

  • Horat P, Semlitsch RD (1994) Effects of predation risk and hunger on the behaviour of two species of tadpoles. Behav Ecol Sociobiol 34:393–401

    Article  Google Scholar 

  • Houlahan JE, Findlay CS (2003) The effects of adjacent land use on wetland amphibian species richness and community composition. Can J Fish Aquat Sci 60:1078–1094

    Article  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population decline. Nature 404:752–755

    Article  CAS  Google Scholar 

  • Hourdry J, Hermite A, Ferrand R (1996) Changes in the digestive tract and feeding behavior of anuran amphibians during metamorphosis. Physiol Zool 69:219–251

    Google Scholar 

  • Jones DK, Hammond JI, Relyea RA (2009) Very highly toxic effects of endosulfan across nine species of tadpole: lag effects and family level selectivity. Environ Toxicol Chem 28:1939–1945

    Article  CAS  Google Scholar 

  • Jung RE, Jagoe CH (1995) Effects of low pH and aluminum on body size, swimming performance, and susceptibility to predation of green frog (Hyla cinerea) tadpoles. Can J Zool 73:2171–2183

    Article  CAS  Google Scholar 

  • Kang HS, Gye MC, Kim MK (2008) Effects of endosulfan on survival and development of Bombina orientalis (Boulenger) embryos. Bull Environ Contam Toxicol 81:262–265

    Article  CAS  Google Scholar 

  • Kavitha P, Venkateswara Rao J (2008) Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environ Toxicol Pharm 26:192–198

    Article  CAS  Google Scholar 

  • Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157:2903–2927

    Article  CAS  Google Scholar 

  • Noldus LPJJ, Spink AJ, Tegelenbosch RAJ (2001) EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav Res Methods 33:398–414

    Article  CAS  Google Scholar 

  • Noldus LPJJ, Spink AJ, Tegelenbosch RAJ (2002) Computerised video tracking, movement analysis and behaviour recognition in insects. Comput Electron Agric 35:201–227

    Article  Google Scholar 

  • Peltzer PM, Lajmanovich RC, Sanchez-Hernandez JC, Cabagna MC, Attademo AM, Bassò A (2008) Effects of agricultural pond eutrophication on survival and health status of Scinax nasicus tadpoles. Ecotoxicol Environ Saf 70:185–197

    Article  CAS  Google Scholar 

  • Pollet I, Bendell-Young LI (2000) Amphibians as indicators of wetland quality in wetlands formed from oil sands effluent. Environ Toxicol Chem 19:2589–2597

    Article  CAS  Google Scholar 

  • Rabiet M, Margoum C, Gouy V, Carluer N, Coquery M (2010) Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment—effect of sampling frequency. Environ Pollut 158:737–748

    Article  CAS  Google Scholar 

  • Rao JV, Begum G, Pallela R, Usman PK, Rao RN (2005) Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos. Int J Environ Res Public Health 2:478–483

    Article  CAS  Google Scholar 

  • Relyea RA, Hoverman JT (2006) Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecol Lett 9:1157–1171

    Article  Google Scholar 

  • Rohr JR, Elskus AA, Shepherd BS, Crowley PH, McCarthy TM, Niedzwiecki JH et al (2003) Lethal and sublethal effects of atrazine, carbaryl, endosulfan, and octylphenol on the streamside salamander, Ambystoma barbouri. Environ Toxicol Chem 22:2385–2392

    Article  CAS  Google Scholar 

  • Semlitsch RD, Scott DE, Pechmann JHK (1988) Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum. Ecology 69:184–192

    Article  Google Scholar 

  • Smith DC (1987) Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology 68:344–350

    Article  Google Scholar 

  • Sparling DW, Fellers GM (2009) Toxicity of two insecticides to California, USA, anurans and its relevance to declining amphibian populations. Environ Toxicol Chem 28:1696–1703

    Article  CAS  Google Scholar 

  • Srivastava N, Harit G, Srivastava R (2009) A study of physico-chemical characteristics of lakes around Jaipur, India. J Environ Biol 30:889–894

    CAS  Google Scholar 

  • Stanley KA, Curtis LR, Simonich SLM, Tanguay RL (2009) Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development. Aquat Toxicol 95:355–361

    Article  CAS  Google Scholar 

  • Taylor B, Skelly D, Demarchis LK, Slade MD, Galusha D, Rabinowitz PM (2005) Proximity to pollution sources and risk of amphibian limb malformation. Environ Health Perspect 113:1497–1501

    Article  Google Scholar 

  • United Nations (2011) Stockholm convention on persistent organic pollutants. Adoption of an amendment to Annex A. UN, New York

    Google Scholar 

  • United States Environmental Protection Agency (2010) Endosulfan: 2010 environmental fate and ecological risk assessment. USEPA, Office of Chemical Safety and Pollution Prevention, US Government Printing Office, Washington DC

    Google Scholar 

  • Vardia HK, Rao PS, Durve VS (1984) Sensitivity of toad larvae to 2,4-D and endosulfan pesticides. Arch Hydrobiol 100:395–400

    CAS  Google Scholar 

  • Venturino A, Rosenbaum E, Caballero de Castro A (2003) Biomarkers of effect in toads and frogs. Biomarkers 8:167–186

    Article  CAS  Google Scholar 

  • Winandy L, Denoël M (2011) The use of visual and automatized behavioral markers to assess methodologies: a study case on PIT-tagging in the alpine newt. Behav Res Methods 43:568–576

    Article  Google Scholar 

Download references

Acknowledgments

Animal research procedures were approved by the Institutional Animal Care and Use Committee (Permit No. 2004/30911). This study was supported in part by a grant provided by Dottorato di Ricerca in Biologia Animale. M. Denoël is a research associate at the F.R.S.-FNRS (Fonds National de la Recherche Scientifique, Belgium). This research benefited from a F.R.F.C. Grant 2.4.507.08.F from the F.R.S.-FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Brunelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavorato, M., Bernabò, I., Crescente, A. et al. Endosulfan Effects on Rana dalmatina Tadpoles: Quantitative Developmental and Behavioural Analysis. Arch Environ Contam Toxicol 64, 253–262 (2013). https://doi.org/10.1007/s00244-012-9819-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-012-9819-7

Keywords

Navigation