Skip to main content
Log in

Metabolites of Polycyclic Aromatic Hydrocarbons (PAHs) in Bile as Biomarkers of Pollution in European Eel (Anguilla anguilla) from German Rivers

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In the light of the alarming decline of the European eel (Anguilla anguilla L.) population, there is an urgent need to define ecological indicators for eel habitat quality. Due to an increasing shortage of glass eels available for local stock enhancement, the decision of whether restocking is a valuable management tool to increase high-quality silver eel escapement to the sea needs to be evaluated. Organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), are among the major threats to fish in their habitat. Therefore, the aim of the investigation presented here was to examine metabolites of PAHs in eel bile as one possible marker for habitat quality. In total, 170 yellow eels were collected in the rivers Rhine, Ems, Weser, Elbe, Havel, Schlei, Eider, Trave, Warnow, Peene, Uecker, and Oder in 2009. PAH metabolites in eel bile were analyzed using high-performance liquid chromatography with fluorescence detection. Metabolites of pyrene and phenanthrene were investigated. Concentrations of PAH metabolites in eel bile varied significantly between several rivers, with the highest mean concentrations of 1-hydroxypyrene and 1-hydroxyphenanthrene in eel bile from the river Trave (2421 and 632 ng/ml). Moreover, huge differences in the ratio of 1-hydroxypyrene to 1-hydroxyphenanthrene, with the highest mean value in eel bile from the river Ems (7.43) and the lowest mean value in eel bile from the river Uecker (0.70), indicate different sources of PAH contamination. A comparative analysis of PAH-metabolite contamination of eels in different river systems is seen as a first step toward a classification of freshwater habitats for restocking purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aas E, Baussant T, Balk L, Liewenborg B, Andersen OK (2000a) PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod. Aquat Toxicol 51:241–258

    Article  CAS  Google Scholar 

  • Aas E, Beyer J, Goksoyr A (2000b) Fixed wavelength fluorescence (FF) of bile as a monitoring tool for polyaromatic hydrocarbon exposure in fish: an evaluation of compound specificity, inner filter effect and signal interpretation. Biomarkers 5:9–23

    Article  CAS  Google Scholar 

  • Ariese F, Kok SJ, Verkaik M, Gooijer C, Velthorst NH, Hofstraat JW (1993) Synchronous fluorescence spectrometry of fish bile: a rapid screening method for the biomonitoring of PAH exposure. Aquat Toxicol 26:273–286

    Article  CAS  Google Scholar 

  • Ariese F, Burgers I, Oudhoff K, Rutten T, Stroomberg G, Vethaak D (1997) Comparison of analytical approaches for PAH metabolites in fish bile samples for marine and estuarine monitoring. Institute for Environmental Studies, Vrije Universiteit, Amsterdam, R-97/9, p 29

  • Au DWT, Wu RSS, Zhou BS, Lam PKS (1999) Relationship between ultrastructural changes and EROD activities in liver of fish exposed to benzo[a]pyrene. Environ Pollut 104:235–247

    Article  CAS  Google Scholar 

  • Beyer J, Jonsson G, Porte C, Krahn MM, Ariese F (2010) Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: a review. Environ Toxicol Pharmacol 30:224–244

    Article  CAS  Google Scholar 

  • Brack W, Altenburger R, Ensenbach U, Möder M, Segner H, Schuurmann G (1999) Bioassay-directed identification of organic toxicants in river sediment in the industrial region of Bitterfeld (Germany) – a contribution to hazard assessment. Arch Environ Contam Toxicol 37:164–174

    Article  CAS  Google Scholar 

  • Brumley CM, Haritos VS, Ahokas JT, Holdway DA (1998) The effects of exposure, duration and feeding status on fish bile metabolites: implications for biomonitoring. Ecotoxicol Environ Saf 39:147–153

    Article  CAS  Google Scholar 

  • Buet A, Banas D, Vollaire Y, Coulet E, Roche H (2006) Biomarker responses in European eel (Anguilla anguilla) exposed to persist organic pollutants. A field study in the Vaccarès lagoon (Camargue, France). Chemosphere 65:1846–1858

    Article  CAS  Google Scholar 

  • Buhler DR, Williams DE (1989) Enzymes involved in metabolism of PAH by fishes and other aquatic animals: oxidative enzymes (or phase I enzymes). In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, pp 151–184

    Google Scholar 

  • Collier TK, Varanasi U (1991) Hepatic activities of xenobiotic metabolizing enzymes and biliary levels of xenobiotics in English sole (Parophrys vetulus) exposed to environmental contaminants. Arch Environ Contam Toxicol 20:462–473

    Article  CAS  Google Scholar 

  • De’Ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  • Deutsches Institut für Normung e.V. (1994) 32645, Nachweis-, Erfassungs- und Bestimmungsgrenze. Beuth Verlag, Berlin

  • Di Giulio RT, Benson WH, Sanders BM, van Veld PA (1995) Biochemical mechanisms: metabolism, adaptation, and toxicity. In: Rand GM (ed) Fundamentals of aquatic toxicology. Taylor & Francis, Washington, DC, pp 523–561

    Google Scholar 

  • Durif C, Dufour S, Elie P (2005) The silvering process of Anguilla anguilla: a new classification from yellow resident to silver migrating stage. J Fish Biol 66:1025–1043

    Article  Google Scholar 

  • Eggens ML, Opperhuizen A, Boon JP (1996) Temporal variation of CYP1A indices, PCB and 1-OH pyrene concentration in flounder, Platichthys flesus, from the Dutch Wadden Sea. Chemosphere 33:1579–1596

    Article  CAS  Google Scholar 

  • Escartin E, Porte C (1999) Assessment of PAH pollution in coastal areas from the NW Mediterranean through the analysis of fish bile. Mar Pollut Bull 38:1200–1206

    Article  CAS  Google Scholar 

  • European Union Council Regulation (EC) No. 1100 (2007) Establishing measures for the recovery of the stock of European eel. Official Journal of the European Union, L 248/17

  • Fenet H, Gomez E, Rosain D, Casellas C (2006) Polycyclic aromatic hydrocarbon metabolites and 7-ethoxyresorufin O-deethylase activity in caged European eels. Arch Environ Contam Toxicol 51:232–236

    Article  CAS  Google Scholar 

  • Gorbi S, Baldini C, Regoli F (2005) Seasonal variability of metallothioneins, cytochrome P450, bile metabolites and oxyradical metabolism in the European eel Anguilla anguilla L. (Anguillidae) and striped mullet Mugil cephalus L. (Mugilidae). Arch Environ Contam Toxicol 49:62–70

    Article  CAS  Google Scholar 

  • Grossbard ML, Boyer JL, Gorden ER (1987) The excretion pattern of biliverdin and bilirubin in bile of the small skate (Raja erinacea). J Comp Physiol B 157:61–66

    Article  CAS  Google Scholar 

  • International Council for the Exploration of the Sea (2009) Report of the ICES Advisory Committee 2009. ICES Advice 2009, Book 9. http://www.ices.dk/products/icesadvice.asp. Accessed 21 June 2011

  • International Council for the Exploration of the Sea (2010a) Report of the ICES Advisory Committee 2010, ICES Advice 2010. Book 9, pp 115–123. http://www.ices.dk/products/icesadvice.asp. Accessed 21 June 2011

  • International Council for the Exploration of the Sea (2010b) Advice 1.5.5.1. Further development of guidance on integrated monitoring and assessment of chemicals and biological effects, p 57. http://www.ices.dk/committe/acom/comwork/report/2010/Special%20Requests/OSPAR%20Guidance%20on%20integrated%20monitoring%20and%20assessment.pdf. Accessed 21 June 2011

  • James MO, Kleinow KM (1993) Trophic transfer of chemicals in the aquatic environment. In: Malins DC, Ostrander GK (eds) Aquatic toxicology: molecular, biochemical and cellular perspectives. Lewis, London, pp 69–92

    Google Scholar 

  • Kammann U (2007) PAH metabolites in bile fluids of dab (Limanda limanda) and flounder (Platichthys flesus)―spatial distribution and seasonal changes. Environ Sci Pollut Res 14:102–108

    Article  CAS  Google Scholar 

  • Kammann U, Gercken J (2010) PAK-Metaboliten in Aalmuttern (Zoarces viviparus) aus der Wismar-Bucht. Umweltwiss Schadst Forsch 22:541–546

    Article  CAS  Google Scholar 

  • Krahn MM, Myers MS, Burrows DG, Malins DC (1984) Determination of metabolites of xenobiotics in the bile of fish from polluted waterways. Xenobiotica 14:633–646

    Article  CAS  Google Scholar 

  • Limburg KE, Wickström H, Svedäng H, Elfman M, Kristiansson P (2003) Do stocked freshwater eels migrate? Evidence from the Baltic suggests “Yes”. Am Fish Soc Symp 33:275–284

    Google Scholar 

  • Lin ELC, Cormier SM, Racine RN (1994) Synchronous fluorometric measurement of metabolites of polycyclic aromatic hydrocarbons in the bile of brown bullhead. Environ Toxicol Chem 13:707–715

    Article  CAS  Google Scholar 

  • Luthe G, Stroomberg GJ, Ariese F, Brinkman UAT, van Straalen NM (2002) Metabolism of 1-fluoropyrene and pyrene in marine flatfish and terrestrial isopods. Environ Toxicol Pharmacol 12:221–229

    Article  CAS  Google Scholar 

  • Meador J, Stein J, Reichert W, Varanasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol 143:79–165

    Article  CAS  Google Scholar 

  • Myers MS, Johnson LL, Collier TK (2003) Establishing the causal relationship between polycyclic aromatic hydrocarbon (PAH) exposure and hepatic neoplasms and neoplasia-related liver lesions in English sole (Pleuronectes vetulus). Hum Ecol Risk Assess 9:67–94

    Article  CAS  Google Scholar 

  • Notar M, Leskosek H, Faganeli J (2001) Composition, distribution and sources of polycyclic aromatic hydrocarbons in sediments of the Gulf of Trieste, Northern Adriatic Sea. Mar Pollut Bull 42:36–44

    Article  CAS  Google Scholar 

  • O’Malley VP, Abrajano TA, Hellou J (1996) Stable carbon isotopic apportionment of individual polycyclic aromatic hydrocarbons in St. John’s Harbour, Newfoundland. Environ Sci Technol 30:634–639

    Article  Google Scholar 

  • Organization for the Protection of the Marine Environment of the North-East Atlantic (1998) JAMP guidelines for contaminant-specific biological effects monitoring. Oslo and Paris Commission, London

    Google Scholar 

  • Pikkarainen AL (2006) Ethoxyresorufin-O-deethylase (EROD) activity and bile metabolites as contamination indicators in Baltic Sea perch: determination by HPLC. Chemosphere 65:1888–1897

    Article  CAS  Google Scholar 

  • Pointet K, Milliet A (2000) PAHs analysis of fish whole gall bladders and livers from the Natural Reserve of Camargue by GC/MS. Chemosphere 40:293–299

    Article  CAS  Google Scholar 

  • Reynolds WJ, Feist SW, Jones GJ, Lyons BP, Sheahan DA, Stentiford GD (2003) Comparison of biomarker and pathological responses in flounder (Platichthys flesus L.) induced by ingested polycyclic aromatic hydrocarbons (PAH) contamination. Chemosphere 52:1135–1145

    Article  CAS  Google Scholar 

  • Ribeiro CAO, Vollaire Y, Sanchez-Chardi A, Roche H (2005) Bioaccumulation and the effects of organochlorine pesticides, PAH and heavy metals in the eel (Anguilla anguilla) at the Camargue Natural Reserve, France. Aquat Toxicol 74:53–69

    Article  CAS  Google Scholar 

  • Richardson DM, Gubbins MJ, Davies IM, Moffat CF, Pollard PM (2004) Effects of feeding status on biliary PAH metabolite and biliverdin concentrations in plaice (Pleuronectes platessa). Environ Toxicol Pharmacol 17:79–85

    Article  CAS  Google Scholar 

  • Roche H, Buet A, Ramade F (2002) Accumulation of lipophilic microcontaminants and biochemical responses in eels from the Biosphere Reserve of Carmargue. Ecotoxicology 11:9–18

    Article  Google Scholar 

  • Roy LA, Steinert S, Bay SM, Greenstein D, Sapozhnikova Y, Bawardi O et al (2003) Biochemical effects of petroleum exposure in hornyhead turbot (Pleuronichthys verticalis) exposed to a gradient of sediments collected from a natural petroleum seep in CA, USA. Aquat Toxicol 65:159–169

    Article  CAS  Google Scholar 

  • Ruddock PJ, Bird DJ, McCalley DV (2002) Bile metabolites of polycyclic aromatic hydrocarbons in three species of fish from the Severn estuary. Ecotoxicol Environ Saf 51:97–105

    Article  CAS  Google Scholar 

  • Ruddock PJ, Bird DJ, McEvoy J, Peters LD (2003) Bile metabolites of polycyclic aromatic hydrocarbons (PAHs) in European eels Anguilla anguilla from United Kingdom estuaries. Sci Total Environ 301:105–117

    Article  CAS  Google Scholar 

  • Stein JE, Reichert WL, Nishimoto M, Varanasi U (1990) Overview of studies in liver carcinogenesis in English sole from Puget Sound: evidence for a xenobiotic chemical etiology II: biochemical studies. Sci Total Environ 94:51–69

    Article  CAS  Google Scholar 

  • Svedäng H, Wickström H (1997) Low fat content in female silver eels: indications of insufficient energetic stores for migration and gonadal development. J Fish Biol 50:475–486

    Article  Google Scholar 

  • Van der Oost R, Goksoyr A, Celander M, Heida H, Vermeulen NPE (1996) Biomonitoring of aquatic pollution with feral eel (Anguilla anguilla). 2. Biomarkers: pollution-induced biochemical responses. Aquat Toxicol 36(3–4):189–222

    Article  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Van Schanke A, Holtz F, van der Meer J, Boon JP, Ariese F, Stroomberg G et al (2001) Dose- and time dependent formation of biliary benzo[a]pyrene metabolites in the marine flatfish dab (Limanda limanda). Environ Toxicol Chem 20:1641–1647

    Article  Google Scholar 

  • Van Schooten FJ, Maas LM, Moonen EJC, Kleinjans JCS, van der Oost R (1995) DNA dosimetry in biological indicator species living on PAH-contaminated soils and sediments. Ecotoxicol Environ Safe 30:171–179

    Article  Google Scholar 

  • Varanasi U, Stein JE (1991) Deposition of xenobiotic chemicals and metabolites in marine organisms. Environ Health Perspect 90:93–100

    Article  CAS  Google Scholar 

  • Varanasi U, Stein JE, Nishimoto M (1989) Biotransformation and disposition of PAH in fish. In: Varanisi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, pp 93–150

    Google Scholar 

  • Vuorinen PJ, Keinänen M, Vuontisjärvi H, Barsiene J, Broeg K, Förlin L et al (2006) Use of biliary PAH metabolites as a biomarker of pollution in fish from the Baltic Sea. Mar Pollut Bull 53:479–487

    Article  CAS  Google Scholar 

  • Westin L (2003) Migration failure in stocked eels Anguilla anguilla. Mar Ecol Prog Ser 254:307–311

    Article  Google Scholar 

  • Yuan SY, Chang JS, Yen JH, Chang BV (2001) Biodegradation of phenanthrene in river sediment. Chemosphere 43:273–278

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Alexander Schulz for skillful technical assistance and to Florian Sambraus for support with data evaluation. Furthermore, we thank our colleagues Klaus Wysujack, Thomas Lang, and Udo Koops, for many useful discussions. This study was partly financed by the EU-Data Collection Regulation (2008/949/EC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kammann.

Additional information

F. Nagel and U. Kammann contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, F., Kammann, U., Wagner, C. et al. Metabolites of Polycyclic Aromatic Hydrocarbons (PAHs) in Bile as Biomarkers of Pollution in European Eel (Anguilla anguilla) from German Rivers. Arch Environ Contam Toxicol 62, 254–263 (2012). https://doi.org/10.1007/s00244-011-9693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-011-9693-8

Keywords

Navigation