Skip to main content
Log in

A Multidisciplinary Approach for Assessing the Toxicity of Marine Sediments: Analysis of Metal Content and Elutriate Bioassays Using Metal Bioavailability and Genotoxicity Biomarkers

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The goal of this article is to verify the applicability of two different biological assays for studying a coastal area that is subject to anthropogenic inputs. Phytochelatins in the marine diatom Thalassiosira weissflogii were used as a biomarker of metal bioavailability. The frequency of genetic damage in the sensitive D7 strain of the yeast Saccharomyces cerevisiae was used to estimate the mutagenic potential. Biological assays were carried out using sediment elutriates. Sediments were collected at three selected sites located in the Gulf of Follonica (Tuscany, Italy), during a 2-year sampling period: Cala Violina (reference site) and the mouths of the rivers Pecora and Cornia, named sites V, P and C, respectively. The chemical characterization of each site was determined in terms of metal concentrations (As, Cd, Cr, Cu, Ni, Pb), measured in 11 sediment samples for each site. The results showed that metal concentrations in sediments from sites C and P were 2–10 times higher than the reference values (site V, year 2004). In addition, we found generally higher metal concentrations in the 2007 sediments than in the 2008 ones, including those of site V, due to the occurrence of an unexpected pollution event. This enabled us to obtain a pollution gradient to validate the proposed bioassays. In fact, the bioassays showed a potential biological hazard in the 2007 elutriates. Significant mutagenic effects were found in samples exhibiting higher concentrations of Cd and Cr. The induction of phytochelatins in T. weissflogii correlated positively with the Cd concentration in the elutriates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahner BA, Morel FMM (1995) Phytochelatin production in marine algae. 2. Induction by various metals. Limnol Oceanog 40:658–665

    Article  CAS  Google Scholar 

  • Ahner BA, Morel FMM, Moffett JW (1997) Trace metal control of phytochelatin production in coastal waters. Limnol Oceanogr 42:601–608

    Article  CAS  Google Scholar 

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    Article  CAS  Google Scholar 

  • Baroni F, Boscagli A, Di Lella LA, Protano G, Riccobono F (2004) Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy). J Geochem Explor 81:1–14

    Article  CAS  Google Scholar 

  • Beiras R, Fernández N, Bellas J, Besada V, González-Quijano A, Nunes T (2003) Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays. Chemosphere 52:1209–1224

    Article  CAS  Google Scholar 

  • Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequencies. Biochimie 88:1549–1559

    Article  CAS  Google Scholar 

  • Brennan RJ, Schestl RH (1996) Cadmium is an inducer of oxidative stress in yeast. Mutat Res 356:171–178

    Article  Google Scholar 

  • Bronzetti G, Cini M, Paoli M, Ciacchini G, Giaconi V, Morichetti E (1997) Mutagenicity and chemical analysis of airborne particulate matter collected in Pisa. J Environ Pathol Toxicol Oncol 16:147–156

    CAS  Google Scholar 

  • Buccolieri A, Buccolieri G, Cardellicchio N, Dell’Atti A, Di Leo A, Maci A (2006) Heavy metals in marine sediments of Taranto Gulf. Marine Chem 99:227–235

    Article  CAS  Google Scholar 

  • Buck KN, Ross JRM, Flegal AR, Bruland KW (2007) A review of total dissolved copper and its chemical speciation in San Francisco Bay, California. Environ Res 105:5–19

    Article  CAS  Google Scholar 

  • Cesar A, Choueri RB, Riba I, Morales-Caselles C, Pereira CD, Santos AR, Abessa DMS, DelValls TA (2007) Comparative sediment quality assessment in different littoral ecosystems from Spain (Gulf of Cadiz) and Brazil (Santos and Sao Vicente estuarine system). Environ Int 33:429–435

    Article  CAS  Google Scholar 

  • Codina JC, Cazorla FM, Perez-Garcia A, De Vicente A (2000) Heavy metal toxicity and genotoxicity in water and sewage determined by microbiological methods. Environ Toxicol Chem 19:1552–1558

    Article  CAS  Google Scholar 

  • De Giglio E, Sabbatici L, Lampugnani L, Slaveykova VI, Tsalev DL (2000) Surface investigation on chemically modified platforms for electrothermal atomic absorption spectrometry. Surf Interf Anal 29:747

    Article  Google Scholar 

  • Depledge MH, Hopkin SP (1995) Methods to assess effects on brackish, estuarine and near-coastal water organisms. In: Linthurst RA, Bourdeau P, Tardiff RG (eds) Methods to assess the effects of chemicals on ecosystems. Wiley, Chichester, UK, pp 125–149

    Google Scholar 

  • Focardi S, Tiezzi E (2009) Distribution of arsenic in soils in a dump area in Tuscany (Scarlino, Follonica). Toxicol Ind Health 25:343–349

    Article  CAS  Google Scholar 

  • Forsburg SL (2005) The yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe: models for cell biology research. Gravit Space Biol Bull 18:3–9

    Google Scholar 

  • Frassinetti S, Della Croce CM, Caltavuturo L, Mascherpa MC, Lampugnani L (2006) Genotoxicity and heavy metals assessment in marine sediments of Follonica Gulf. In: 36th Annual meeting of the European environmental mutagen society “From genes to molecular epidemiology,” Praha (Czech Republic), July 2–6 2006

  • Geffard A, Queau H, Dedourge O, Biagianti-Risboug S, Geffard O (2007) Influence of biotic and abiotic factors on metallothionein level in Gammarus pulex. Comp Biochem Physiol C 145:632–640

    CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    Article  CAS  Google Scholar 

  • Guillard RRL (1975) Cultures of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrates animals. Plenum Press, New York, pp 29–60

    Google Scholar 

  • Guzzella L, Monarca S, Zani C, Feretti D, Zerbini I, Buschini A, Poli P, Rossi C, Richardson D (2004) In vitro potential genotoxic effects of surface drinking water treated with chlorine and alternative disinfectants. Mutat Res 564:179–193

    CAS  Google Scholar 

  • Italian Ministerial Decree (2003) Quality Standard of Sediments of marine/coastal waters, 367/2003

  • Kawakami SK, Gledhill M, Achterberg EP (2006) Production of phytochelatins and glutathione by marine phytoplankton in response to metal stress. J Phycol 42:975–989

    Article  CAS  Google Scholar 

  • Le Faucheur S, Behra R, Sigg L (2005) Thiol and metal contents in periphyton exposed to elevated copper and zinc concentrations: a field and microcosm study. Environ Sci Technol 39:8099–8107

    Article  CAS  Google Scholar 

  • Lee MR, Correa JA, Seed R (2006) A sediment quality triad assessment of the impact of copper mine tailings disposal on the littoral sedimentary environment in the Atacama region of northern Chile. Marine Pollut Bull 52:1389–1395

    Article  CAS  Google Scholar 

  • Leoni L, Sartori F (1997) Heavy Metal and Arsenic distribution in sediments of the Elba- Argentario basin, southern Tuscany, Italy. Environ Geol 32:83–92

    Article  CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Macken A, Giltrap M, Foley B, McGovern E, McHugh B, Davoren M (2009) An integrated approach to the toxicity assessment of Irish marine sediments. Application of porewater toxicity identification evaluation (TIE) to Irish marine sediments. Environ Int 35:98–106

    Article  CAS  Google Scholar 

  • Magdaleno A, Mendelson A, Fabrizio de Iorio A, Rendina A, Moretton J (2008) Genotoxicity of leachates from highly polluted lowland river sediments destined for disposal in landfill. Waste Manag 28:2134–2139

    Article  CAS  Google Scholar 

  • Martin-Diaz ML, Blasco J, Sales D, DelValls TA (2004) Biomarkers as tools to assess sediment quality. Laboratory and field surveys. Trends Anal Chem 23:807–818

    Article  CAS  Google Scholar 

  • Martin-Diaz ML, Kalman J, Riba I, Fernandez de la Reguera D, Blasco J, DelValls A (2007) The use of a metallothionein-like-proteins (MTLP) kinetic approach for metal bioavailability monitoring in dredged material. Environ Int 33:463–468

    Article  Google Scholar 

  • Morelli E, Fantozzi L (2008) Phytochelatins in the diatom Phaeodactylum tricornutum Bohlin: an evaluation of their use as biomarkers of metal exposure in marine waters. Bull Environ Contam Toxicol 81:236–241

    Article  CAS  Google Scholar 

  • Morelli E, Marangi M, Fantozzi L (2009) A phytochelatin-based bioassay in marine diatoms useful for the assessment of bioavailability of heavy metals released by polluted sediments. Environ Int 35:532–538

    Article  CAS  Google Scholar 

  • Nendza M (2002) Inventory of marine biotest methods for the evaluation of dredged material and sediments. Chemosphere 48:865–883

    Article  CAS  Google Scholar 

  • OECD (1986a) Test guidelines–health effects, No. 480, Genetic toxicology: Saccharomyces cerevisiae, Gene Mutation assay

  • OECD (1986b) Test guidelines–health effects, No. 481, Genetic Toxicology: Saccharomyces cerevisiae, Mitotic Recombination assay

  • Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res 567:109–149

    Article  CAS  Google Scholar 

  • Pacifico R, Adamo P, Cremisini C, Spaziani F, Ferrara L (2007) A geochemical analytical approach for the evaluation of heavy metal distribution in lagoon sediments. J Soils Sediments 7(5):313–325

    Article  CAS  Google Scholar 

  • Pawlik-Skowronska B (2000) Relationships between acid-soluble thiol peptides and accumulated Pb in the green alga Stichococcus bacillaris. Aquat Toxicol 50:221–230

    Article  CAS  Google Scholar 

  • Pellacani C, Buschini A, Furbini M, Poli P, Rossi C (2006) A battery of in vivo and in vitro tests useful for genotoxic pollutant detection in surface waters. Aquat Toxicol 77:1–10

    Article  CAS  Google Scholar 

  • Scarano G, Bramanti E (1993) Voltammetric behaviour of marine hydrophobic copper complexes: effect of adsorption processes at a mercury electrode. Anal Chim Acta 277:137–144

    Article  CAS  Google Scholar 

  • Tsalev DL, D’Ulivo A, Lampugnani L, Di Marco M, Zamboni R (1995) Thermally stabilized iridium on an integrated, carbide-coated platform as a permanent modifier for hydride-forming elements in electrothermal atomic absorption spectrometry. Part 1. Optimization studies. J Anal Atom Spectrom 10:1003

    Google Scholar 

  • US EPA (2001) Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses. Technical manual, EPA-823-B-01–002. US EPA, Washington, DC

    Google Scholar 

  • US EPA (United States Environmental Protection Agency) (1991) Evaluation of dredged material proposed for ocean disposal: testing manual, EPA-503/8-1/001.US EPA, Washington, DC

  • Usero J, Morillo J, El Bakouri H (2008) A general integrated ecotoxicological method for marine sediment quality assessment: Application to sediments from littoral ecosystems on Southern Spain’s Atlantic coast. Marine Pollut Bull 56:2027–2036

    Article  CAS  Google Scholar 

  • Vargas VMF, Migliavacca SB, De Melo AC, Horn RC, Guidobono RR, Fernandez Ferreira IC, Pestana MH (2001) Genotoxicity assessment in aquatic environments under the influence of heavy metals and organic contaminants. Mutat Res 490:141–158

    CAS  Google Scholar 

  • Volpi Ghirardini A, Arizzi Novelli A, Tagliapietra D (2005) Sediment toxicity assessment in the Lagoon of Venice (Italy) using Paracentrotus lividus (Echinidermata: Echinoidea) fertilization and embryo bioassays. Environ Int 31:1065–1077

    Article  CAS  Google Scholar 

  • Weber J, Kreutzmann J, Plantikow A, Pfitzner S, Claus E, Manz W, Heininger P (2006) A novel particle contact assay with the yeast Saccharomyces cerevisiae for ecotoxocological assessment of freshwater sediments. J Soils Sediments 6(2):84–91

    Article  CAS  Google Scholar 

  • Zimmerman FK, Kern R, Rasenberg H (1975) A yeast for simultaneous detection of induced mitotic crossing-over, mitotic gene conversion and reverse mutation. Mutat Res 28:381–388

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Roberto Bedini (Institute of Biology and Marine Ecology, Piombino–LI) for providing the sediment samples and Alessandro Puntoni (Institute of Biophysics, CNR–PI) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Morelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frassinetti, S., Pitzalis, E., Mascherpa, M.C. et al. A Multidisciplinary Approach for Assessing the Toxicity of Marine Sediments: Analysis of Metal Content and Elutriate Bioassays Using Metal Bioavailability and Genotoxicity Biomarkers. Arch Environ Contam Toxicol 62, 13–21 (2012). https://doi.org/10.1007/s00244-011-9667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-011-9667-x

Keywords

Navigation