Skip to main content
Log in

Bioaccumulation and Biomagnification of Organochlorines in a Marine Food Web at a Pristine Site in Iceland

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Organochlorine (OC) bioaccumulation and biomagnification were studied in a marine food web at a pristine site in Iceland. The species studied were the gastropod and grazer chink shell (Lacuna vincta), the filter feeding bivalve blue mussel (Mytilus edulis), the predators butterfish (Pholis gunnellus), and the seabird black guillemot (Cepphus grylle), all sampled and analysed in 1996–1997. Individual OC levels were generally low in chink shell and blue mussels, somewhat elevated in the fish, and an order of a magnitude higher in the top predator black guillemot, except for ΣHCH (hexachlorocyclohexane isomers) and Σchlordane levels, which were similar in all organisms, ranging from 10 to 36 ng/g lipid weight (lw). In the molluscs and fish, mean concentrations of ΣPCB (polychlorinated biphenyl) ranged from 111 to 377 ng/g lw, ΣDDT (dichlorodiphenyltrichloroethane) ranged from 19 to 65 ng/g lw, and HCB (hexachlorobenzene) ranged from 21 to 30 ng/g lw. The levels of same OCs in the black guillemot were on average 2352, 361, and 283 ng/g lw, respectively. The OC tissue concentrations in blue mussel and black guillemot are comparable to levels in Arctic and sub-Arctic regions, but OC levels in blue mussel tissue were an order of magnitude lower than found in the North Sea and the Baltic Sea. The relative composition of OCs were generally similar among species with the PCB congeners emerging as the most abundant compounds with levels an order of magnitude higher than the other compounds in all species. Food web magnification factors (FWMFs) were determined for the OCs by using trophic levels determined from δ15N. FWMFs >1, indicating biomagnification, were found for ΣPCB, penta- or higher chlorinated PCBs (e.g., PCB 101, 118, 138, 153, 180), β-HCH, HCB, ΣDDT, p,p-DDE, and transnonachlor. The highest FWMF was observed for PCB 180 at FWMF = 5.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AMAP (1998) AMAP assessment report: Arctic pollution issues. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway

    Google Scholar 

  • Bailey R, Barrie LA, Halsall CJ, Fellin P, Muir D (2000) Atmospheric organochlorine pesticides in the Western Canadian Arctic: evidence of transpacific transport. J Geophys Res 105:11805–11811

    Article  CAS  Google Scholar 

  • Bignert A, Olsson M, Persson W, Jensen S, Zakrisson S, Litzén K, Eriksson U, Häggberg L, Alsberg T (1998) Temporal trends of organochlorines in Northern Europe, 1967–1995. Relation to global fractionation, leakage from sediments and international measures. Environ Pollut 99:177–198

    Article  CAS  Google Scholar 

  • Boon JP, Eijgenraam F, Duinker JC (1989) A structure–activity relationship (SAR) approach towards metabolism of PCBs in marine animals of different trophic levels. Marine Environ Res 27:159–176

    Article  CAS  Google Scholar 

  • Borgå K, Gabrielsen GW, Skaare JU (2001) Biomagnification of organochlorines along a Barents Sea food chain. Environ Pollut 113:187–198

    Article  Google Scholar 

  • Borgå K, Hop H, Skaare JU, Wolker H, Gabrielsen GW (2007) Selective bioaccumulation of chlorinated pesticides and metabolites in Arctic seabirds. Environ Pollut 145:545–553

    Article  CAS  Google Scholar 

  • Bright DA, Grundy SL, Reimer KJ (1995) Differential bioaccumulation of non-ortho-substituted and other PCB congeners in coastal Arctic invertebrates and fish. Environ Sci Technol 29:2504–2512

    Article  CAS  Google Scholar 

  • Broman D, Näf C, Rolff C, Zebürh Y, Fry B, Hobbie J (1992) Using ratios of stable nitrogen isotopes to estimate bioaccumulation and flux of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in two food chains from the northern Baltic. Environ Toxicol Chem 11:331–345

    CAS  Google Scholar 

  • Brown JF (1992) Metabolic alterations of PCB residues in aquatic fauna: distributions of cytochrome P4501A- and P4502B-like activities. Marine Environ Res 34:261–266

    Article  CAS  Google Scholar 

  • Burkow IC, Kallenborn R (2000) Sources and transport of persistent pollutants to the Arctic. Toxicol Lett 112–113:87–92

    Article  Google Scholar 

  • Burreau S, Zebühr Y, Broman D, Ishaq R (2006) Biomagnification of PBDEs and PCBs in food webs from the Baltic Sea and the northern Atlantic Ocean. Sci Total Environ 366:659–672

    Article  CAS  Google Scholar 

  • Clark KE, Mackay D (1991) Dietary uptake and biomagnification of four chlorinated hydrocarbons by guppies. Environ Toxicol Chem 10:1205–1217

    Article  CAS  Google Scholar 

  • Cleemann M, Riget F, Paulsen GB (2000a) Organochlorines in Greenland glaucous gulls (Larus hyperboreus) and Iceland gulls (Larus glaucoides). Sci Total Environ 245:117–130

    Article  CAS  Google Scholar 

  • Cleemann M, Riget F, Paulsen GB, Klungsøyr J, Dietz R (2000b) Organochlorines in Greenland marine fish, mussels and sediments. Sci Total Environ 245:87–102

    Article  CAS  Google Scholar 

  • Cotham WEJ, Bidleman TF (1991) Estimating the atmospheric deposition of organochlorine contaminants to the Arctic. Chemosphere 22:165–188

    Article  CAS  Google Scholar 

  • DeBruyn AMH, Gobas FAP (2007) The sorptive capacity of animal protein. Environ Tox Chem 26(9):1803–1808

    Article  CAS  Google Scholar 

  • Egilsson D, Ólafsdóttir ED, Yngvadóttir E, Halldórsdóttir H, Sigurðsson FH, Jónsson GS, Jensson H, Gunnarsson K, Þráinsson SA, Stefánsson A, Indriðason HD, Hjartarson H, Torlacius J, Ólafsdóttir K, Gíslason SR, Svavarsson J (1999) Mælingar á mengandi efnum á og við Ísland. Niðurstöður vöktunarmælinga. Starfshópur um mengunarmælingar. (Measurements of contaminants in and around Iceland. Report on environmental monitoring, Ministry of Environment), Reykjavík, pp 138 (in Icelandic)

  • Fisk AT, Norstrom RJ, Cymbalisty CD, Muir DCG (1998) Dietary accumulation and depuration of hydrophobic organochlorines: bioaccumulation parameters and their relationship with KOW. Environ Toxicol Chem 17:951–961

    Article  CAS  Google Scholar 

  • Gobas FAPC, Muir DCG, Mackay D (1998) Dynamics of dietary bioaccumulation and fecal elimination of hydrophobic organic chemicals in fish. Chemosphere 17:943–962

    Article  Google Scholar 

  • Gobas FAPC, Wilcockson JB, Russell RW, Haffner GD (1999) Mechanism of biomagnification in fish under laboratory and field conditions. Environ Sci Technol 33:133–141

    Article  CAS  Google Scholar 

  • Goerke H, Weber K (2001) Species-specific elimination of polychlorinated biphenyls in estuarine animals and its impact on residue patterns. Marine Environ Res 51:131–149

    Article  CAS  Google Scholar 

  • Graham J (1977) Reproductive effort and r- and K-selection in two species of Lacuna (Gastropoda: Prosobranchia). Marine Biol 40:217–224

    Article  Google Scholar 

  • Gustavson K, Jonson P (1999) Some halogenated organic compounds in sediments and blue mussels (Mytilus edulis) in Nordic Seas. Marine Pollut Bull 38:723–736

    Article  CAS  Google Scholar 

  • Hansson S, Hobbie JE, Elmgren R, Larsson U, Fry B, Johansson S (1997) The stable nitrogen isotope ratio as a marker of food web interactions and fish migration. Ecology 78:2249–2257

    Article  Google Scholar 

  • Hobson KA, Welch HE (1992) The determination of trophic relationships within a high Arctic marine food web using δ13C and δ15 N analysis. Marine Ecol Prog Ser 84:9–18

    Article  CAS  Google Scholar 

  • Hobson KA, Fisk A, Karnovsky N, Holst M, Gagnon J-M, Fortier M (2002) A stable isotope (δ13C, δ15 N) model for the North Water Polynya foodweb: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Res 49:5131–5150

    Article  CAS  Google Scholar 

  • Hoekstra PF, O’Hara TM, Fisk AT, Borgå K, Solomon KR, Muir DCG (2003a) Trophic transfer of persistent organichlorine contaminants (OCs) within an arctic marine food web from the southern Beaufort-Chukchi Seas. Environ Pollut 124:509–522

    Article  CAS  Google Scholar 

  • Hoekstra PF, O’Hara TM, Karlsson H, Solomon KR, Muir DCG (2003b) Enantiomer specific biomagnification of α-hexachlorocyclohexane and selected chiral chlordane-related compounds within an Arctic marine food web. Environ Toxicol Chem 22:2482–2491

    Article  CAS  Google Scholar 

  • Hop H, Borgå K, Gabrielsen GW, Kleivane L, Skaare JU (2002) Food web magnification of persistent organic pollutants in poikilotherms and homeotherms from the Barents Sea. Environ Sci Technol 36:2589–2597

    Article  CAS  Google Scholar 

  • Jarman WM, Hobson KA, Sydeman WJ, Bacon CE, McLaren EB (1996) Influence of trophic position and feeding location on contaminant levels in the gulf of the Farallones food web revealed by stable isotope analysis. Environ Sci Technol 30:654–660

    Article  CAS  Google Scholar 

  • Jensen S, Reutergårdh L, Janson B (1983) Analytical methods for measuring organochlorines and methyl mercury by gas chromatography. FAO/SIDA Manual of methods in aquatic environment research. Part 9. Analysis of metals and organochlorines in fish. FAO Fish Tech Pap 212:21–333

    Google Scholar 

  • Johnston TA, Fisk AT, Whittle DM, Muir DCG (2002) Variation in organochlorine bioaccumulation by a predatory fish; gender, geography, and data analysis methods. Environ Sci Technol 36:4238–4244

    Article  CAS  Google Scholar 

  • Jónsson S (1999) Temperature time series from Icelandic coastal stations. J Marine Res Inst Iceland 16:59–68

    Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC (2007) Food web-specific biomagnification of persistent organic polutants. Science 317:236–238

    Article  CAS  Google Scholar 

  • Kidd KA, Hesslein RH, Ross BJ, Koczanski K, Stephens GR, Muir DCG (1998a) Bioaccumulation of organochlorines through a remote freshwater food web in the Canadian Arctic. Environ Poll 102:91–103

    Article  CAS  Google Scholar 

  • Kidd KA, Schindler DW, Hesslein RH, Muir DCG (1998b) Effects of trophic position and lipid on organochlorine concentrations in fishes from subarctic lakes in Yukon Territory. Can J Fish Aquat Sci 55:869–881

    Article  CAS  Google Scholar 

  • Klobes U, Vetter W, Glotz D, Luckas B, Skirnisson K, Hersteinsson P (1998) Levels and enantiomeric ratios of chlorinated hydrocarbons in livers of artic fox (Alopex lagopus) and adipose tissue and liver of a polar bear (Ursus maritimus) sampled in Iceland. Int J Environ Anal Chem 69:67–81

    Article  CAS  Google Scholar 

  • Mackay D, Fraser A (2000) Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110:375–391

    Article  CAS  Google Scholar 

  • Maney EJ Jr, Ebersole JP (1990) Continuous reproduction and episodic recruitment of Lacuna vincta (Montagu, 1803) in the Gulf of Maine. Veliger 33(3):215–221

    Google Scholar 

  • Mehlum F, Daelemans FF (1995) PCBs in Arctic seabirds from the Svalbard region. Sci Total Environ 160(161):441–446

    Google Scholar 

  • Meijer SN, Ockenden WA, Sweetman AJ, Breivik K, Grimalt JO, Jones KC (2003) Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ Sci Technol 37:667–672

    Article  CAS  Google Scholar 

  • Moisey J, Fisk AT, Hobson KA, Norstrom RJ (2001) Hexachlorocyclohexane (HCH) isomers and chiral signatures of α-HCH in the Arctic marine food web of the Northwater Polynya. Environ Sci Technol 35:1920–1927

    Article  CAS  Google Scholar 

  • Muir DCG, Wageman R, Hargrave BT, Thomas DJ, Peakall DB, Norstrom RJ (1992) Arctic marine ecosystem contamination. Sci Total Environ 122:75–134

    Article  CAS  Google Scholar 

  • Muir DCG, Savinove T, Savinov V, Alexeeva L, Potelov V, Svetochev V (2003) Bioaccumulation of PCBs and chlorinated pesticides in seals, fishes and invertebrates from the White Sea, Russia. Sci Total Environ 21:111–131

    Article  CAS  Google Scholar 

  • Oehme M, Schlabach M, Kallenborn R, Haugen JE (1996) Sources and pathways of persistent polychlorinated pollutants to remote areas of the North Atlantic and levels in the marine food chain: a research update. Sci Total Environ 186:13–24

    Article  CAS  Google Scholar 

  • Ólafsdóttir K, Petersen AE, Thórdardóttir S, Jóhannesson T (1995) Organochlorine residues in Gyrfalcons (Falco rusticolus) in Iceland. Bull Environ Contam Toxicol 55:382–389

    Article  Google Scholar 

  • Ólafsdóttir K, Skírnisson K, Gylfadóttir G, Johannesson T (1998) Seasonal fluctuations of organochlorine levels in the common eider (Somateria mollissima) in Iceland. Environ Poll 103:153–158

    Article  Google Scholar 

  • Ólafsdóttir K, Petersen AE, Magnúsdóttir EV, Björnsson T, Jóhannesson T (2001) Persistent organochlorine levels in six prey species of the gyrfalcon Falco rusticolus in Iceland. Environ Pollut 112:245–251

    Article  Google Scholar 

  • Ólafsdóttir K, Petersen AE, Magnusdóttir EV, Björnsson T, Jóhannesson T (2005) Temporal trends of organochlorine contamination in Black Guillemots in Iceland from 1976 to 1996. Environ Pollut 133:509–515

    Article  CAS  Google Scholar 

  • Ottar B (1981) The transfer of airborn pollutants to the Arctic region. Atmos Environ 15:1439–1445

    Article  CAS  Google Scholar 

  • Owens NJP (1987) Natural variations in δ15N in the marine environment. Adv Marine Biol 24:390–451

    Google Scholar 

  • Petersen Æ (1977) Íslenskar teistur endurheimtar við Grænland og erlend teista við Ísland. Náttúrufræðingurinn 47:149–153 (in Islandic)

    Google Scholar 

  • Petersen Æ (1981) Breeding biology and feeding ecology of black guillimots. Doctoral thesis, University of Oxford, Oxford

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Prevedouros K, Brorström-Lundén E, Halsall CJ, Jones KC, Lee RGM, Sweetman AJ (2004) Seasonal and long-term trends in atmospheric PAH concentrations: evidence and implications. Environ Pollut 128:17–27

    Article  CAS  Google Scholar 

  • Rasmussen JB, Rowan DRS, Lean DRS, Carey JH (1990) Food chain structure in Ontario lakes determines PCB levels in lake trout (Salvelinus namaycush) and other pelagic fish. Can J Fish Aquat Sci 47:2030–2038

    Article  Google Scholar 

  • Rolff C, Broman D, Näf C, Zebürh Y (1993) Potential biomagnification of PCDD/Fs: new possibilities for quantitative assessment using stable isotope trophic position. Chemosphere 27:461–468

    Article  CAS  Google Scholar 

  • Ruus A, Ugland KI, Skaare JU (2002) Influence of trophic position on organochlorine concentrations and composition patterns in a marine food web. Environ Toxicol Chem 21:2356–2364

    Article  CAS  Google Scholar 

  • Sharpe S, Mackay D (2000) A framework for evaluating bioaccumulation in food webs. Environ Sci Technol 34:2373–2379

    Article  CAS  Google Scholar 

  • Stapleton HM, Baker JE (2003) Comparing polybrominated diphenyl ether and polychlorinated biphenyl bioaccumulation in a food web in Grand Traverse Bay, Lake Michigan. Arch Environ Contam Toxicol 45:227–237

    Article  CAS  Google Scholar 

  • Van der Oost R, Van Gastel L, Worst D, Hanraads M, Satumalay K, Van Schooten F, Heida H, Vermeulen NPE (2004) Biochemical markers in feral roach (Rutilus rutilus) in relation to the bioaccumulation of organic trace pollutants. Chemosphere 29:801–817

    Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (1996) A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecol Monogr 66:451–477

    Article  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ15N and δ13C and the trophic position of aquatic consumers. Ecology 80:1395–1404

    Article  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanog 46:2061–2066

    CAS  Google Scholar 

  • Vander Zanden MJ, Cabana G, Rasmussen JB (1997) Comparing the trophic position of littoral fish estimated using stable nitrogen isotopes (δ15N) and dietary data. Can J Fish Aquat Sci 54:1142–1158

    Article  Google Scholar 

  • Vetter W, Hummert K, Luckas B, Skirnisson K (1995) Organochlorine residues in two seal species from Western Iceland. Sci Total Environ 170:159–164

    Article  CAS  Google Scholar 

  • Wania F, Mackay D (1993) Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22:10–18

    Google Scholar 

Download references

Acknowledgments

The authors thank Hafsteinn Guðmundsson, Hafþór Hafsteinsson, and Hrönn Hafsteinsdóttir at Flatey for their help with sampling of organisms and Kristín Ólafsdóttir at the Institute of Pharmacy, Pharmacology and Toxicology, University of Iceland for analyzing the organochlorine tissue concentrations. The project was funded by The Marine Research Institute in Iceland, the Icelandic Research Council, and the Nordic Council of Ministers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halldora Skarphedinsdottir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skarphedinsdottir, H., Gunnarsson, K., Gudmundsson, G.A. et al. Bioaccumulation and Biomagnification of Organochlorines in a Marine Food Web at a Pristine Site in Iceland. Arch Environ Contam Toxicol 58, 800–809 (2010). https://doi.org/10.1007/s00244-009-9376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9376-x

Keywords

Navigation