Skip to main content
Log in

Reduced Fitness of Daphnia magna Fed a Bt-Transgenic Maize Variety

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Genetically modified (GM) maize expressing the Bt-toxin Cry1Ab (Bt-maize) was tested for effects on survival, growth, and reproduction of the water flea Daphnia magna, a crustacean arthropod commonly used as a model organism in ecotoxicological studies. In three repeated experiments, D. magna were fed 100% ground maize in suspension, using either GM or isogenic unmodified (UM) maize. D. magna fed GM-maize showed a significantly reduced fitness performance: The mortality was higher, a lower proportion of females reached sexual maturation, and the overall egg production was lower compared to D. magna fed UM isogenic maize. We conclude that the tested variety of Bt-maize and its UM counterpart do not have the same quality as food sources for this widely used model organism. The combination of a reduced fitness performance combined with earlier onset of reproduction of D. magna fed Bt-maize indicates a toxic effect rather than a lower nutritional value of the GM-maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aeschbacher K, Messikommer R, Meile L, Wenk C (2005) Bt176 corn in poultry nutrition: physiological characteristics and fate of recombinant plant DNA in chickens. Poult Sci 84(3):385–394

    CAS  Google Scholar 

  • Andow D, Hilbeck A (2004) Science-based risk assessment for nontarget effects of transgenic crops. Bioscience 54(7):637–649

    Article  Google Scholar 

  • Atienzar FA, Cheung VV, Vadesh NJ, Epledge MH (2001) Fitness parameters and DNA effects are sensitive indicators of copper-induced toxicity in Daphnia magna. Toxicol Sci 59:241–250

    Article  CAS  Google Scholar 

  • Barry MJ (1996) Effects of an organochlorine pesticide on different levels of organization in Daphnia. Ecotoxicology and environmental safety. Environ Safety 34:239–251

    Article  CAS  Google Scholar 

  • Brake J, Vlachos D (1998) Evaluation of transgenic event 176 “Bt” corn in broiler chickens. Poult Sci 77(5):648-653

    CAS  Google Scholar 

  • Brandt SL, Coudron TA, Habibi J et al (2004) Interaction of two Bacillus thuringiensis delta-endotoxins with the digestive system of lygus hesperus. Curr Microbiol 48(1):1–9

    Article  CAS  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  Google Scholar 

  • Brett MT (1993) Resource quality effects on Daphnia-Longispina offspring fitness. J Plankton Res 15(4):403–412

    Article  Google Scholar 

  • Campbell AK, Wann KT, Matthews SB (2004) Lactose causes heart arrhythmia in the water flea Daphnia pulex. Comp Biochem Physiol B: Biochem Mol Biol 139(2):225–234

    Article  CAS  Google Scholar 

  • Clark BW, Prihoda KR, Coats JR (2006) Subacute effects of transgenic Cry1Ab Bacillus thuringiensis corn litter on the isopods Trachelipus rathkii and Armadillidium nasatum. Environ Toxicol Chem 25(10):2653–2661

    Article  CAS  Google Scholar 

  • Clark JH, Ipharraguerre IR (2001) Biotech crops as feeds for livestock. Abstr Papers Am Chem Soc 222:U67

    Google Scholar 

  • Crickmore N (2005) Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbioly 13(8):347–350

    Article  CAS  Google Scholar 

  • Domingo JL (2007) Toxicity studies of genetically modified plants: a review of the published literature. Crit Rev Food Sci Nutr 47:721–733

    Article  CAS  Google Scholar 

  • Douville M, Gagne F, Blaise C, Andre C (2007) Occurence and persistence of Bacillus thuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment. Ecotoxicol Environ Safety 66:195–203

    Article  CAS  Google Scholar 

  • Dutton A, Romeis J, Bigler F (2003) Assessing the risks of insect resistant transgenic plants on entomophagous arthropods: Bt-maize expressing Cry1Ab as a case study. Biocontrol 48(6):611–636

    Article  CAS  Google Scholar 

  • Dutton A, Romeis J, Bigler F (2005) Effects of Bt maize expressing Cry1Ab and Bt spray on Spodoptera littoralis. Entomol Exp Applic 114(3):161–169

    Article  CAS  Google Scholar 

  • Enserink EL, Kerkhofs MJJ, Baltus CAM, Koeman JH (1995) Influence of food quantity and lead-exposure on maturation in Daphnia-Magna: evidence for a trade-off mechanism. Funct Ecol 9(2):175–185

    Article  Google Scholar 

  • Ewen SWB, Pusztai A (1999) Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine. Lancet 354(9187):1353–1354

    Article  CAS  Google Scholar 

  • Groot AT, Dicke M (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant J 31(4):387–406

    Article  CAS  Google Scholar 

  • Hammond BG, Dudek R, Lemen JK, Nemeth MA (2006) Results of a 90-day safety assurance study with rats fed grain from corn borer-protected corn. Food Chem Toxicol 44(7):1092–1099

    Article  CAS  Google Scholar 

  • Hansen FT, Forbes VE, Forbes TL (1999) Effects of 4-n-nonylphenol on life-history traits and population dynamics of a polychaete. Ecol Appl 9(2):482–495

    Article  Google Scholar 

  • Hilbeck A (2001) Implications of transgenic, insecticidal plants for insect and plant biodiversity. Perspect Plant Ecol Evol Syst 4(1):43–61

    Article  Google Scholar 

  • Hilbeck A, Schmidt JEU (2006) Another view on Bt proteins: how specific are they and what else might they do? Biopestic Int 2(1):1–50

    Google Scholar 

  • Hill R, Sendashonga C (2006) Conservation biology, genetically modified organisms and the biosafety protocol. Conserv Biol 20(6):1620–1625

    Article  Google Scholar 

  • James C (2006) Global status of commercialized biotech/GM crops. ISAAA Brief No. 35. 2006. ISAAA, Ithaca, NY

    Google Scholar 

  • Kluttgen B, Dulmer U, Engels M, Ratte HT (1994) Adam, an artificial fresh-water for the culture of zooplankton. Water Res 28(3):743–746

    Article  Google Scholar 

  • Knudsen I, Poulsen M (2007) Comparative safety testing of genetically modified foods in a 90-day rat feeding study design allowing the distinction between primary and secondary effects of the new genetic event. Regul Toxicol Pharmacol 49(1):53–62

    Article  CAS  Google Scholar 

  • Kowalchuk GA, Bruinsma M, van Veen JA (2003) Assessing responses of soil microorganisms to GM plants. Trends Ecol Evol 18(8):403–410

    Article  Google Scholar 

  • Kramer KJM, Jak RG, van Hattum B, Hooftman RN, Zwolsman JJG (2004) Copper toxicity in relation to surface water-dissolved organic matter: biological effects to Daphnia magna. Environ Toxicol Chemistry 23(12):2971–2980

    Article  Google Scholar 

  • Lövei GL, Arpaia S (2005) The impact of transgenic plants on natural enemies: a critical review of laboratory studies. Entomol Exp Applic 114:1–14

    Article  Google Scholar 

  • Mauri M, Baraldi E, Simonini R (2003) Effects of zinc exposure on the polychaete Dinophilus gyrociliatus: a life-table response experiment. Aquat Toxicol 65(1):93–100

    Article  CAS  Google Scholar 

  • Mendelson M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nature Biotechnol 21(9):1003–1009

    Article  CAS  Google Scholar 

  • Nogueira ICG, Saker ML, Pflugmacher S, Wiegand C, Vasconcelos VM (2004) Toxicity of the cyanobacterium Cylindrospermopsis raciborskii to Daphnia magna. Environ Toxicol 19:453–459

    Article  CAS  Google Scholar 

  • O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annu Rev Entomol 50:271–292

    Article  CAS  Google Scholar 

  • Palm CJ, Schaller DL, Donegan KK, Seidler RJ (1996) Persistence in soil of transgenic plant produced Bacillus thuringiensis var kurstaki delta-endotoxin. Can J Microbiol 42(12):1258–1262

    Article  CAS  Google Scholar 

  • Pusztai A (2002) Can science give us the tools for recognizing possible health risks of GM food? Nutr Health 16:73–84

    Google Scholar 

  • Reuter T, Aulrich K, Berk A, Flachowsky G (2002) Investigations on genetically modified maize (Bt-maize) in pig nutrition: chemical composition and nutritional evaluation. Arch Anim Nutr 56(1):23–31

    Article  CAS  Google Scholar 

  • Roff DA (2002) Life history evolution. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Rosi-Marshall EJ, Tank JL, Royer TV et al (2007) Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proc Natl Acad Sci USA 104(41):16,204–16,208

    Google Scholar 

  • Sidhu RS, Hammond BG, Fuchs RL et al (2000) Glyphosate-tolerant corn: the composition and feeding value of grain from glyphosate-tolerant corn is equivalent to that of conventional corn (Zea mays L.). J Agric Food Chem 48(6):2305–2312

    Article  CAS  Google Scholar 

  • Sims IR, Watson S, Holmes D (1993) Toward a standard Daphnia juvenile production test. Environ Toxicol Chem 12(11):2053–2058

    Article  CAS  Google Scholar 

  • Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519

    Article  CAS  Google Scholar 

  • Stearns SC, Koella JC (1986) The evolution of phenotypic plasticity in life-history traits: predictions of reaction norms for age and size at maturity. Evolution 40(5):893–913

    Article  Google Scholar 

  • Tapp H, Stotzky G (1995) Insecticidal activity of the toxins from Bacillus-Thuringiensis subspecies kurstaki and tenebrionis adsorbed and bound on pure and soil clays. Appl Environl Microbiol 61(5):1786–1790

    CAS  Google Scholar 

  • Teshima R, Watanabe T, Okunuki H et al (2002) Effect of subchronic feeding of genetically modified corn (CBH351) on immune system in BN rats and B10A mice. J Food Hyg Soc Japan 43(5):273–279

    Article  CAS  Google Scholar 

  • Twombly S, Clancy N, Burns CW (1998) Life history consequences of food quality in the freshwater copepod Boeckella triarticulata. Ecology 79(5):1711–1724

    Google Scholar 

  • Vanni MJ, Lampert W (1992) Food quality effects on life-history traits and fitness in the generalist herbivore Daphnia. Oecologia 92(1):48–57

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Chito Medina and farmers from the Iloilo district in the Philippines for providing the maize samples used in the experiments. We are grateful to Professor Kaare M. Nielsen for valuable discussions related to the experiments. We also thank Dr. Idun Grønsberg, Marte Albrigtsen, Julia Eggert, and Elisabeth Olsen at the GenØk Lab in Tromsø and Dr. Morten Johansen and Kriss Rokkan Iversen at the Norwegian College of Fishery Science for practical assistance during the experiments. The studies were supported by a grant (Project No. 154504) from the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bøhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bøhn, T., Primicerio, R., Hessen, D.O. et al. Reduced Fitness of Daphnia magna Fed a Bt-Transgenic Maize Variety. Arch Environ Contam Toxicol 55, 584–592 (2008). https://doi.org/10.1007/s00244-008-9150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9150-5

Keywords

Navigation