Skip to main content
Log in

Toxicity Assessment of the Herbicides Sulcotrione and Mesotrione Toward Two Reference Environmental Microorganisms: Tetrahymena pyriformis and Vibrio fischeri

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The potential toxicity of sulcotrione (2-[2-chloro-4-(methylsulfonyl)benzoyl]-1,3-cyclohexanedione) and mesotrione (2-[4-(methylsulfonyl)-2-nitrobenzoyl]-1,3-cyclohexanedione), two selective triketonic herbicides, was assessed using representative environmental microorganisms frequently used in ecotoxicology: the eukaryote Tetrahymena pyriformis and the prokaryote Vibrio fischeri. The aims were also to evaluate the toxicity of different known degradation products, to compare the toxicity of these herbicides with that of atrazine, and to assess the toxicity of the commercial herbicidal products Mikado® and Callisto®. Toxicity assays involved the Microtox test, the T. pyriformis population growth impairment test, and the T. pyriformis nonspecific esterase activity test. For each compound, we report original data (IC50 values) on nontarget cells frequently used in ecotoxicology. Analytical standards sulcotrione and mesotrione showed no toxic effect on T. pyriformis population growth but a toxic influence was observed on nonspecific esterase activities of this microorganism and on metabolism of V. fischeri. Most of the degradation products studied and the two commercial formulations showed a greater toxicity than the parent molecules. Compared with the effect of atrazine, the toxicity of these triketonic herbicides was less than in T. pyriformis and greater than or the same as in V. fischeri. Additional work is needed to obtain a more accurate picture of the environmental impact of these herbicides. It will be necessary in future experiments to study the ecosystemic levels (aquatic and soil compartments) and to assess the potential toxicity of the newly discovered degradation products and of the additives accompanying the active ingredient in the commercial herbicidal formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alferness P, Wiebe L (2002) Determination of mesotrione residues and metabolites in crops, soil, and water by liquid chromatography with fluorescence detection. J Agric Food Chem 50:3926–3934

    Article  CAS  Google Scholar 

  • Bogaerts P, Bohatier J, Bonnemoy F (2001) Use of the ciliated protozoan Tetrahymena pyriformis for the assessment of toxicity and quantitative structure–activity relationships of xenobiotics: comparison with the microtox test. Ecotoxicol Environ Saf 49:293–301

    Article  CAS  Google Scholar 

  • Bonnet JL, Dusser M, Bohatier J, Laffosse J (2003) Cytotoxicity assessment of three therapeutic agents, cyclosporin-A, cisplatin and doxorubicin, with the ciliated protozoan Tetrahymena pyriformis. Res Microbiol 154:375–385

    Article  CAS  Google Scholar 

  • Bonnet JL, Bonnemoy F, Dusser M, Bohatier (2007) Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ Toxicol 22:78–91

    Article  CAS  Google Scholar 

  • Cedergreen N, Streibig JC (2005) The toxicity of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard. Pest Manag Sci 61:1152–1160

    Article  CAS  Google Scholar 

  • Chaabane H, Cooper JF, Azouzi L, Coste CM (2005) Influence of soil properties on the adsorption-desorption of sulcotrione and its hydrolysis metabolites on various soils. J Agric Food Chem 53:4091–4095

    Article  CAS  Google Scholar 

  • Chaabane H, Vulliet E, Joux F, Lantoine F, Conan P, Cooper JF, Coste (2007) Photodegradation of sulcotrione in various aquatic environments and toxicity of its photoproducts for some marine micro-organisms. Water Res 41:1781–1789

    Article  CAS  Google Scholar 

  • Cherrier R, Perrin-Ganier C, Schiavon M (2004) Degradation of sulcotrione in a brown soil amended with various organic matters. Agronomie 24:29–33

    Article  CAS  Google Scholar 

  • deNoyelles F, Kettle WD, Sinn DE (1982) The responses of plankton communities in experimental ponds to atrazine, the most heavily used pesticide in the United States. Ecology 63:1285–1293

    Article  CAS  Google Scholar 

  • Durand S, Amato P, Sancelme M, Delort AM, Combourieu B, Besse-Hogan P (2006a) First isolation and characterization of a bacterial strain that biotransforms the herbicide mesotrione. Lett Appl Microbiol 43:222–228

    Article  CAS  Google Scholar 

  • Durand S, Légeret B, Martin AS, Sancelme M, Delort AM, Besse-Hoggan P, Combourieu B (2006b) Biotransformation of the triketone herbicide mesotrione by a Bacillus strain. Metabolite profiling using liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 20:2603–2613

    Article  CAS  Google Scholar 

  • Ebert E, Dumford SW (1976) Effects of triazine herbicides on the physiology of plants. Residue Rev 65:1–103

    Google Scholar 

  • Gledhill AJ, Jones BK, Laird WJ (2001) Metabolism of 2-(4-methylsulphonyl-2-nitrobenzoyl)-1,3-cyclohexanedione (mesotrione) in rat and mouse. Xenobiotica 31:733–747

    Article  CAS  Google Scholar 

  • Hoagland KD, Drenner RW, Smith JD, Cross DR (1993) Freshwater community responses to mixtures of agricultural pesticides: Effects of atrazine and bifenthrin. Environ Toxicol Chem 12:627–637

    Article  CAS  Google Scholar 

  • Kaiser KLE, Palabrica VS (1991) Photobacterium phosphoreum toxicity data index. Water Pollut Res J Can 26:361–431

    CAS  Google Scholar 

  • Kaiser KLE (1998) Correlations of Vibrio fischeri bacteria test data with bioassay data for other organisms. Environ Health Persp 106:283–591

    Article  Google Scholar 

  • Lee DL, Knudsen CG, Michaelay WJ, Chin H, Nguyen NH, Carter CG, Cromartie TH, Lake BH, Shribbs JM, Fraser T (1998) The structure–activity relationships of the triketone class of HPPD herbicides. Pestic Sci 54:377–384

    Article  CAS  Google Scholar 

  • Mitchell G, Barlett DW, Fraser TEM, Hawkes TR, Holt DC, Townson JK, Wichert RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57:120–128

    Article  CAS  Google Scholar 

  • Nilsson JR (1989) Tetrahymena in cytotoxicology: with special reference to effects of heavy metals and selected drugs. Eur J Protistol 25:2–25

    Google Scholar 

  • Norris SR, Barrette TR, DellaPenna D (1995) Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7:2139–2149

    Article  CAS  Google Scholar 

  • Plesner P, Rasmussen L, Zeuthen E (1964) Techniques used in the study of synchronous Tetrahymena. In: Zeuthen E (eds) Synchrony in Cell Division and Growth. Intersciences Press, New York, NY, pp 534–565

    Google Scholar 

  • Pratt JR, Bowers NJ, Niederlehner BR, Cairns J Jr (1988) Effects of atrazine on freshwater microbial communities. Arch Environ Contam Toxicol 17:449–457

    Article  CAS  Google Scholar 

  • Purcell M, Leroux GD, Carpentier R (1990) Atrazine action on the donor side of photosystem II in triazine-resistant and susceptible weed biotypes. Pest Biochem Physiol 37:83–89

    Article  CAS  Google Scholar 

  • Sauvant MP, Pépin D, Bohatier J, Grolière CA, Veyre A (1994) Comparative study of two in vitro models L-929 fibroblasts and Tetrahymena pyriformis (GL) for the cytotoxicological evaluation of packaged water. Sci Total Environ 156:159–167

    Article  CAS  Google Scholar 

  • Sauvant MP, Pépin D, Grolière CA, Bohatier J (1995) Effects of organic and inorganic substances on the cell proliferation of L-929 fibroblasts and Tetrahymena toxicological bioassays. Bull Environ Contam Toxicol 55:171–178

    Article  CAS  Google Scholar 

  • Sauvant MP, Pépin D, Piccinni E (1999) Tetrahymena pyriformis: A tool for toxicological studies. Chemosphere 38:1631–1669

    Article  CAS  Google Scholar 

  • Schultz TW, Netzeva TI, Roberts DW, Cronin MTD (2005) structure–toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, α,β-unsaturated chemicals. Chem Res Toxicol 18:330–341

    Article  CAS  Google Scholar 

  • Schulz A, Ort O, Beyer P, Kleinig H (1993) SC-0051, a 2-benzoyl-cyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett 318:162–166

    Article  CAS  Google Scholar 

  • Stratton GW (1983) Interaction effects of permethrin and atrazine combinations towards several nontarget microorganisms. Bull Environ Contam Toxicol 31:297–303

    Article  CAS  Google Scholar 

  • Ter Halle A, Richard C (2006a) Simulated solar irradiation of mesotrione in natural waters. Environ Sci Technol 40:3842–3847

    Article  CAS  Google Scholar 

  • Ter Halle A, Drncova D, Richard C (2006b) Phototransformation of the herbicide sulcotrione on maize cuticular wax. Environ Sci Technol 40:2989–2995

    Article  CAS  Google Scholar 

  • Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197

    Article  CAS  Google Scholar 

  • Tu CM (1992) Effect of some herbicides on activities of microorganisms and enzymes in soil. J Environ Sci Health Part B 27:695–709

    Article  Google Scholar 

  • Ward GS, Ballantine L (1985) Acute and chronic toxicity of atrazine to estuarine fauna. Estuaries 8:22–27

    Article  CAS  Google Scholar 

  • Wichert RA, Townson JK, Bartlett DW, Foxon GA (1999) Technical review of mesotrione, a new maize herbicide. In Proc Brighton Crop Prot Conference: Weeds, BCPC, Farnham, Surrey, UK, Vols 1–3, pp 105–110

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Bonnet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnet, J.L., Bonnemoy, F., Dusser, M. et al. Toxicity Assessment of the Herbicides Sulcotrione and Mesotrione Toward Two Reference Environmental Microorganisms: Tetrahymena pyriformis and Vibrio fischeri . Arch Environ Contam Toxicol 55, 576–583 (2008). https://doi.org/10.1007/s00244-008-9145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9145-2

Keywords

Navigation