Skip to main content
Log in

Biological and Electrochemical Treatment of Used Metalworking Fluids: A Toxicity-Reduction Evaluation

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate and compare the toxicity of spent metalworking fluids (MWFs) and two different effluents obtained by biologic and electrochemical treatment of spent MWFs toward aquatic organisms of different trophic levels. The obtained toxicity data was used to calculate safe concentrations of both effluents. The spent MWFs without treatment showed the highest toxicity among the tested samples and should be classified as “extremely toxic” (toward invertebrates) or “very toxic” (toward other test organisms). Both methods applied for MWFs treatment resulted in a significant decrease in toxicity of the treated MWFs, but the obtained effluents had still to be regarded as “toxic”. The ranges of the values of acute toxic units for both effluents were significantly narrower than for the untreated spent MWFs. The values of the safe concentrations of the spent MWFs, the biologic effluent, and the water phase resulting from electrochemical emulsion breaking were equal to 0.013%, l.8%, and 1.3%, respectively, corresponding to chemical oxygen demand concentrations of 1.8%, 32, and 34 mg O2*L−1. These values are far lower than the discharging limit of 125 mg O2*L−1 for industrial effluents, according to the relevant Polish regulations. It is therefore recommended to include toxicity bioassay parameters into guidelines for wastewater discharges to surface waters because the existing chemical and physical parameters are not sufficient to describe the environmental impact of industrial wastewater. Toxicity bioassays can be a promising tool for evaluating the efficacy of unit operations in industrial wastewater treatment (toxicity reduction evaluation) as well as identification of toxic substances in effluents (toxicity identification evaluation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Anderson JE, Kim BR, Mueller SA, Lofton TV (2003) Composition and analysis of mineral oils and other organic compounds in metalworking and hydraulic fluids. Crit Rev Environ Sci Technol 33:73–109

    Article  CAS  Google Scholar 

  • Burke JM (1991) Waste treatment of metalworking fluids, a comparison of three common methods. Lubr Eng 47:238–246

    CAS  Google Scholar 

  • Bienkowski K (1993) Coolants & lubricants: The truth (part 1). Manuf Eng 110:90–96

    Google Scholar 

  • Chen C-Y, Chen J-N, Chen S-D (1999) Toxicity assessment of industrial wastewater by microbial testing method. Water Sci Technol 39:139–l43

    Article  Google Scholar 

  • Cheng C, Phipps D, Alkhaddar RM (2005) Treatment of spent metalworking fluids. Water Res 39:4051–4063

    Article  CAS  Google Scholar 

  • Costan G, Bermingham N, Blaise C, Ferard JF (1993) Potential Ecotoxic Effects Probe (PEEP): A novel index to assess and compare the toxic potential of industrial effluents. Environ Toxic Water 8:115–140

    Article  CAS  Google Scholar 

  • El Baradie MA (1996) Cutting fluids: Part I. Characterisation. J Mater Process Tech 56:786–797

    Article  Google Scholar 

  • Gordon T (2004) Metalworking fluid–the toxicity of a complex mixture. J Toxicol Environ Health 67:209–219

    Article  CAS  Google Scholar 

  • ISO 6060 (1989) Water quality—Determination of the chemical oxygen demand

  • ISO 6341 (1996) Water quality—Determination of the inhibition of the mobility ofDaphnia magna Straus (Cladocera, Crustacea) - Acute toxicity test

  • ISO 8692 (1989) Water quality—Fresh water algal growth inhibition test with Scenedesmus subspicatus and Selenastrum capricornutum

  • Liu MC, Chen C-M, Cheng HY, Chen HY, Su YC, Hung TY (2002) Toxicity of different industrial effluents in Taiwan: A comparison of the sensitivity of Daphma similis and Microtox. Environ Toxicol 17:93–97

    Article  CAS  Google Scholar 

  • Mattsby-Baltzer I, Sandin M, Ahlström B, Allenmark S, Edebo M, Falsen E, et al. (1989) Microbial growth and accumulation in industrial metal-working fluids. Appl Envin Microb 55:2681–2689

    CAS  Google Scholar 

  • Musiałek K, Nowak D, Pofelska-Filip I, Fedaczyński A (2002) Ecological aspects of electrochemical treatment of used metal working fluids by modernized Rotresel method. In: Proceedings of the 3rd International Conference Oil Pollution—Prevention, Characterization, Clean Technology. University of Technology, Gdansk, Poland, pp 71–82

  • Musiałek K, Polowski W, Profelska-Filip I, Nowak D, Fedaczyński A (2000) Rotresel method and unit for breaking-up of the used oil emulsions applied in machining. In: Proceedings of the IV Ecofrim Symposium Recycling And Neutralisation of Metalworking Fluids. IOS, Kracow, Poland, pp 67–73

  • Muszyński A, Łebkowska M (2005) Biodegradation of used metalworking fluids in wastewater treatment. Pollut J Environ Stud 14:73–79

    Google Scholar 

  • Peng G, Roberts JC (2000) Solubility and toxicity of resin acids. Water Res 34:2779–2785

    Article  CAS  Google Scholar 

  • Persoone G, Goyvaerts M, Janssen C, De Coen W, Vangheluwe M (1993) Cost-effective acute hazard monitoring of polluted waters and waste dumps with the aid of Toxkits. Final Report. Commission of the European Communities, ACE 89/BE 2/D3

  • Polish Standard (1986) Water and waste water. Test for content of organic solvents extractable matter. Determination of total organic matter content extractable by petroleum ether by gravimetric method, PN-86/C-04573.01 (in Polish: Polska Norma PN-86/C-04573.01 Woda i ścieki. Badania zawartości substancji ekstrahujących się rozpuszczalnikami organicznymi. Oznaczanie całkowitej zawartości substancji organicznych ekstrahujących się eterem naftowym metodą wagową).

  • Polish Standard (1990) Water and waste water. Tests for toxicity of pollutants to aquatic organisms. Determination of acute toxicity to Lebistes reticulatus Peters, PN-90/C-04610.04 (in Polish: Polska Norma PN-90/C-04610.04 Woda i ścieki. Badania toksyczności zanieczyszczeń dla organizmów wodnych. Oznaczanie toksyczności ostrej na gupiku Lebistes reticulatus Peters)

  • Rossmoore HW (1995) Microbiology of metalworking fluids; Deterioration, disease and disposal. Lubr Eng 51:112–118

    Google Scholar 

  • Rossmoore HW (2001) Microbiology of metalworking fluids: a 21st century perspective. In: Proceedings of the 2nd Conference Microbial Biodegradation and Biodeterioration of Technical Materials. Łódź, Poland, pp 63–66

  • Selvakumari G, Murugesan M, Pattabi S, Sathishkumar M (2002) Treatment of electroplating industry effluent using maize cob carbon. Bull Environ Contam Toxicol 69:195–202

    Article  CAS  Google Scholar 

  • Sponza DT (2002) Incorporation of toxicity tests to the discharges of pulp paper industry in Turkey. Bull Environ Contam Toxicol 69:719–726

    Article  CAS  Google Scholar 

  • Sprague JB (1970) Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Res 4:3–32

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1984) Policy for the development of water quality-based permit limitations for toxic pollutants: National policy. USEPA FRL 2533-1. Office of Water, United States Environmental Protection Agency, Washington, DC

  • United States Environmental Protection Agency (1991) Technical support document for water quality-based toxics control EPA/505/2-90-001. Office of Water, United States Environmental Protection Agency, Washington, DC

  • van der Gast CJ, Whiteley AS, Lilley AK, Knowles CJ, Thompson IP (2003) Bacterial community structure and function in a metal-working fluid. Environ Microbiol 5:453–461

    Article  Google Scholar 

  • Weber E (1972) Grundriss der biologischen Statistik für Naturwissenschaftler, Landwirte und Mediziner. VEB Gustav Fischer Verlag, Jena, Germany 674 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Muszyński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muszyński, A., Załęska–Radziwiłł, M., Łebkowska, M. et al. Biological and Electrochemical Treatment of Used Metalworking Fluids: A Toxicity-Reduction Evaluation. Arch Environ Contam Toxicol 52, 483–488 (2007). https://doi.org/10.1007/s00244-006-0131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-006-0131-2

Keywords

Navigation