Skip to main content
Log in

An overview of global research landscape in etiology of urolithiasis based on bibliometric analysis

  • Review
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

The high incidence, recurrence and treatment costs of urolithiasis have a serious impact on patients and society. For a long time, countless scholars have been working tirelessly on studies related to the etiology of urolithiasis. A comprehensive understanding of the current status will be beneficial to the development of this field. We collected all literature about the etiology of urolithiasis from 1990 to 2022 using the Web of Science (WoS) database. VOSviewer, Bibliometrix and CiteSpace software were used to quantitatively analyze and visualize the data as well. The query identified 3177 articles for final analysis, of which related to the etiology of urolithiasis. The annual number of publications related to urolithiasis research has steadily increased during the latest decade. United States (1106) and China (449) contributed the most publications. University of Chicago (92) and Indiana University (86) have the highest number of publications. Urolithiasis and Journal of Urology have published the most articles in the field. Coe FL is the most productive author (63 articles), whose articles have obtained the most citations in all (4141 times). The keyword, such as hypercalciuria, hyperoxaluria, citrate, oxidative stress, inflammation, Randall’s plaque, are the most attractive targets for the researchers. Our review provides a global landscape of studies related to the etiology of urolithiasis, which can serve as a reference for future studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. The source data that support the findings of this study are available from the Core Collection database in WoS (https://www.webofscience.com/wos/woscc/basic-search).

References

  1. López M, Hoppe B (2010) History, epidemiology and regional diversities of urolithiasis. Pediatr Nephrol 25(1):49–59. https://doi.org/10.1007/s00467-008-0960-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63(5):1817–1823. https://doi.org/10.1046/j.1523-1755.2003.00917.x

    Article  PubMed  Google Scholar 

  3. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, Traxer O, Tiselius HG (2016) Kidney stones. Nat Rev Dis Primers 2:16008. https://doi.org/10.1038/nrdp.2016.8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Scales CD Jr, Smith AC, Hanley JM, Saigal CS (2012) Prevalence of kidney stones in the United States. Eur Urol 62(1):160–165. https://doi.org/10.1016/j.eururo.2012.03.052

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367(9507):333–344. https://doi.org/10.1016/s0140-6736(06)68071-9

    Article  CAS  PubMed  Google Scholar 

  6. Alelign T, Petros B (2018) Kidney stone disease: an update on current concepts. Adv Urol 2018:3068365. https://doi.org/10.1155/2018/3068365

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aggarwal KP, Narula S, Kakkar M, Tandon C (2013) Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int 2013:292953. https://doi.org/10.1155/2013/292953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shtukenberg AG, Hu L, Sahota A, Kahr B, Ward MD (2022) Disrupting crystal growth through molecular recognition: designer therapies for kidney stone prevention. Acc Chem Res 55(4):516–525. https://doi.org/10.1021/acs.accounts.1c00631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morgan MS, Pearle MS (2016) Medical management of renal stones. BMJ 352:i52. https://doi.org/10.1136/bmj.i52

    Article  PubMed  Google Scholar 

  10. Coe FL, Parks JH, Asplin JR (1992) The pathogenesis and treatment of kidney stones. N Engl J Med 327(16):1141–1152. https://doi.org/10.1056/nejm199210153271607

    Article  CAS  PubMed  Google Scholar 

  11. Coe FL, Evan A, Worcester E (2005) Kidney stone disease. J Clin Invest 115(10):2598–2608. https://doi.org/10.1172/jci26662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farmanesh S, Ramamoorthy S, Chung J, Asplin JR, Karande P, Rimer JD (2014) Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization. J Am Chem Soc 136(1):367–376. https://doi.org/10.1021/ja410623q

    Article  CAS  PubMed  Google Scholar 

  13. Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111(5):607–616. https://doi.org/10.1172/jci17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sherer BA, Chen L, Kang M, Shimotake AR, Wiener SV, Chi T, Stoller ML, Ho SP (2018) A continuum of mineralization from human renal pyramid to stones on stems. Acta Biomater 71:72–85. https://doi.org/10.1016/j.actbio.2018.01.040

    Article  PubMed  PubMed Central  Google Scholar 

  15. Williams JC Jr, Lingeman JE, Coe FL, Worcester EM, Evan AP (2015) Micro-CT imaging of Randall’s plaques. Urolithiasis 43(Suppl 1(0 1)):13–17. https://doi.org/10.1007/s00240-014-0702-z

    Article  PubMed  Google Scholar 

  16. Winfree S, Weiler C, Bledsoe SB, Gardner T, Sommer AJ, Evan AP, Lingeman JE, Krambeck AE, Worcester EM, El-Achkar TM, Williams JC Jr (2021) Multimodal imaging reveals a unique autofluorescence signature of Randall’s plaque. Urolithiasis 49(2):123–135. https://doi.org/10.1007/s00240-020-01216-4

    Article  CAS  PubMed  Google Scholar 

  17. Taguchi K, Hamamoto S, Okada A, Unno R, Kamisawa H, Naiki T, Ando R, Mizuno K, Kawai N, Tozawa K, Kohri K, Yasui T (2017) Genome-wide gene expression profiling of Randall’s plaques in calcium oxalate stone formers. J Am Soc Nephrol 28(1):333–347. https://doi.org/10.1681/asn.2015111271

    Article  CAS  PubMed  Google Scholar 

  18. Peerapen P, Thongboonkerd V (2023) Protein network analysis and function enrichment via computational biotechnology unravel molecular and pathogenic mechanisms of kidney stone disease. Biomed J. https://doi.org/10.1016/j.bj.2023.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chung J, Granja I, Taylor MG, Mpourmpakis G, Asplin JR, Rimer JD (2016) Molecular modifiers reveal a mechanism of pathological crystal growth inhibition. Nature 536(7617):446–450. https://doi.org/10.1038/nature19062

    Article  CAS  PubMed  Google Scholar 

  20. Borofsky MS, Dauw CA, Cohen A, Williams JC Jr, Evan AP, Lingeman JE (2016) Integration and utilization of modern technologies in nephrolithiasis research. Nat Rev Urol 13(9):549–557. https://doi.org/10.1038/nrurol.2016.148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bao JF, Hu PP, She QY, Zhang D, Mo JJ, Li A (2022) A bibliometric and visualized analysis of uremic cardiomyopathy from 1990 to 2021. Front Cardiovasc Med 9:908040. https://doi.org/10.3389/fcvm.2022.908040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L (2022) Knowledge mapping of exosomes in autoimmune diseases: a bibliometric analysis (2002–2021). Front Immunol 13:939433. https://doi.org/10.3389/fimmu.2022.939433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kutluk MG, Danis A (2021) Bibliometric analysis of publications on pediatric epilepsy between 1980 and 2018. Childs Nerv Syst 37(2):617–626. https://doi.org/10.1007/s00381-020-04897-9

    Article  PubMed  Google Scholar 

  24. Zhang X, Lu Y, Wu S, Zhang S, Li S, Tan J (2022) An overview of current research on mesenchymal stem cell-derived extracellular vesicles: a bibliometric analysis from 2009 to 2021. Front Bioeng Biotechnol 10:910812. https://doi.org/10.3389/fbioe.2022.910812

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Chen Y, Liao B, Luo D, Wang K, Li H, Zeng G (2018) Epidemiology of urolithiasis in Asia. Asian J Urol 5(4):205–214. https://doi.org/10.1016/j.ajur.2018.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zeng G, Mai Z, Xia S, Wang Z, Zhang K, Wang L, Long Y, Ma J, Li Y, Wan SP, Wu W, Liu Y, Cui Z, Zhao Z, Qin J, Zeng T, Liu Y, Duan X, Mai X, Yang Z, Kong Z, Zhang T, Cai C, Shao Y, Yue Z, Li S, Ding J, Tang S, Ye Z (2017) Prevalence of kidney stones in China: an ultrasonography based cross-sectional study. BJU Int 120(1):109–116. https://doi.org/10.1111/bju.13828

    Article  PubMed  Google Scholar 

  27. Randall A (1937) The origin and growth of renal calculi. Ann Surg 105(6):1009–1027. https://doi.org/10.1097/00000658-193706000-00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan SR, Canales BK, Dominguez-Gutierrez PR (2021) Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 17(6):417–433. https://doi.org/10.1038/s41581-020-00392-1

    Article  CAS  PubMed  Google Scholar 

  29. Ermer T, Nazzal L, Tio MC, Waikar S, Aronson PS, Knauf F (2023) Oxalate homeostasis. Nat Rev Nephrol 19(2):123–138. https://doi.org/10.1038/s41581-022-00643-3

    Article  CAS  PubMed  Google Scholar 

  30. Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T (2016) EAU guidelines on diagnosis and conservative management of urolithiasis. Eur Urol 69(3):468–474. https://doi.org/10.1016/j.eururo.2015.07.040

    Article  PubMed  Google Scholar 

  31. Verhulst A, Dehmel B, Lindner E, Akerman ME, D’Haese PC (2022) Oxalobacter formigenes treatment confers protective effects in a rat model of primary hyperoxaluria by preventing renal calcium oxalate deposition. Urolithiasis 50(2):119–130. https://doi.org/10.1007/s00240-022-01310-9

    Article  CAS  PubMed  Google Scholar 

  32. Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM, Cave DR (2008) Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol 19(6):1197–1203. https://doi.org/10.1681/asn.2007101058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khan SR (2014) Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol 3(3):256–276. https://doi.org/10.3978/j.issn.2223-4683.2014.06.04

    Article  PubMed  PubMed Central  Google Scholar 

  34. Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189(3):803–811. https://doi.org/10.1016/j.juro.2012.05.078

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was funded by three projects, including Natural Science Foundation of China (82270797), Natural Science Foundation of China (82070723), and Natural Science Foundation of Hubei Province, China (2022CFC020).

Author information

Authors and Affiliations

Authors

Contributions

CD and SY conceived the manuscript; CS and QS carried out data collection; ZH and YX performed data analysis and visualization; CD wrote the manuscript; LM, CS and SY critically reviewed the manuscript; All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Lingchao Meng or Sixing Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6209 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Song, C., He, Z. et al. An overview of global research landscape in etiology of urolithiasis based on bibliometric analysis. Urolithiasis 51, 71 (2023). https://doi.org/10.1007/s00240-023-01447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00240-023-01447-1

Keywords

Navigation