Skip to main content
Log in

Integrated analysis of mRNA-seq and miRNA-seq reveals the potential roles of Egr1, Rxra and Max in kidney stone disease

  • Research
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Nephrolithiasis is one of the most common and frequent urologic diseases worldwide. The molecular mechanism of kidney stone formation is complex and remains to be illustrated. Transcript factors (TFs) that influenced the expression pattern of multiple genes, as well as microRNAs, important posttranscriptional modulators, play vital roles in this disease progression. Datasets of nephrolithiasis mice and kidney stone patients were acquired from Gene Expression Omnibus repository. TFs were predicted from differentially expressed genes by RcisTarget. The target genes of differential-expressed microRNAs were predicted by miRWalk. MicroRNA-mRNA network and PPI network were constructed. Functional enrichment analysis was performed via Metascape and Cytoscape identified hub genes. The assay of quantitative real-time PCR (q-PCR) and immunochemistry and the datasets of oxalate diet-induced nephrolithiasis mice kidneys and kidney stone patients’ samples were utilized to validate the bioinformatic results. We identified three potential key TFs (Egr1, Rxra, Max), which can be modulated by miR-181a-5p, miR-7b-3p and miR-22-3p, respectively. The TFs and their regulated hub genes influenced the progression of nephrolithiasis via altering the expression of genes enriched in the functions of fibrosis, cell proliferation and molecular transportation and metabolism. The expression changes of transcription factors were consistent in q-PCR and immunochemistry results. For regulated hub genes, they showed consistent expression changes in oxalate diet-induced nephrolithiasis mice model and human kidneys with stones. The identified and verified three TFs, which may be modulated by microRNAs in nephrolithiasis disease progression, mainly influence biological processes responding to fibrosis, proliferation and molecular transportation and metabolism. The transcript influence showed consistency in multiple nephrolithiasis mice models and kidney stone patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

Data availability

All datasets analysed in this study are available in online websites. Further inquiries can be directed to the corresponding author.

References

  1. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S et al (2016) Kidney stones. Nat Rev Dis Primers 2:16008. https://doi.org/10.1038/nrdp.2016.8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Romero V, Akpinar H, Assimos DG (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 12(2–3):e86-96

    PubMed  PubMed Central  Google Scholar 

  3. Xu LHR, Adams-Huet B, Poindexter JR, Maalouf NM, Moe OW, Sakhaee K (2017) Temporal changes in kidney stone composition and in risk factors predisposing to stone formation. J Urol 197(6):1465–1471. https://doi.org/10.1016/j.juro.2017.01.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khan SR, Canales BK, Dominguez-Gutierrez PR (2021) Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 17(6):417–433. https://doi.org/10.1038/s41581-020-00392-1

    Article  CAS  PubMed  Google Scholar 

  5. Joshi S, Peck AB, Khan SR (2013) NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys. Oxid Med Cell Longev 2013:462361. https://doi.org/10.1155/2013/462361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Bai Y, Yin S, Cui J, Zhang Y, Wang X et al (2021) Circadian clock gene BMAL1 reduces urinary calcium oxalate stones formation by regulating NRF2/HO-1 pathway. Life Sci 265:118853. https://doi.org/10.1016/j.lfs.2020.118853

    Article  CAS  PubMed  Google Scholar 

  7. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107(7):823–826. https://doi.org/10.1016/s0092-8674(01)00616-x

    Article  CAS  PubMed  Google Scholar 

  8. Cerqueira DM, Tayeb M, Ho J (2022) MicroRNAs in kidney development and disease. JCI Insight. https://doi.org/10.1172/jci.insight.158277

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887. https://doi.org/10.1152/physrev.00006.2010

    Article  CAS  PubMed  Google Scholar 

  10. Xie Z, Chen J, Chen Z (2022) MicroRNA-204 attenuates oxidative stress damage of renal tubular epithelial cells in calcium oxalate kidney-stone formation via MUC4-mediated ERK signaling pathway. Urolithiasis 50(1):1–10. https://doi.org/10.1007/s00240-021-01286-y

    Article  CAS  PubMed  Google Scholar 

  11. Su B, Han H, Ji C, Hu W, Yao J, Yang J et al (2020) MiR-21 promotes calcium oxalate-induced renal tubular cell injury by targeting PPARA. Am J Physiol Renal Physiol 319(2):F202–F214. https://doi.org/10.1152/ajprenal.00132.2020

    Article  CAS  PubMed  Google Scholar 

  12. Herrmann C, Van de Sande B, Potier D, Aerts S (2012) i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules. Nucleic Acids Res 40(15):e114. https://doi.org/10.1093/nar/gks543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12(8):697. https://doi.org/10.1038/nmeth.3485

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li X, Chen W, Huang L, Zhu M, Zhang H, Si Y et al (2022) Sinomenine hydrochloride suppresses the stemness of breast cancer stem cells by inhibiting Wnt signaling pathway through down-regulation of WNT10B. Pharmacol Res 179:106222. https://doi.org/10.1016/j.phrs.2022.106222

    Article  CAS  PubMed  Google Scholar 

  16. Imrichova H, Hulselmans G, Atak ZK, Potier D, Aerts S (2015) i-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in human, mouse and fly. Nucleic Acids Res 43(W1):W57-64. https://doi.org/10.1093/nar/gkv395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodenburg WS, van Buul JD (2021) Rho GTPase signalling networks in cancer cell transendothelial migration. Vasc Biol 3(1):R77–R95. https://doi.org/10.1530/VB-21-0008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Craig VJ, Zhang L, Hagood JS, Owen CA (2015) Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 53(5):585–600. https://doi.org/10.1165/rcmb.2015-0020TR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nattel S (2017) Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol 3(5):425–435. https://doi.org/10.1016/j.jacep.2017.03.002

    Article  PubMed  Google Scholar 

  20. Karsdal MA, Nielsen SH, Leeming DJ, Langholm LL, Nielsen MJ, Manon-Jensen T et al (2017) The good and the bad collagens of fibrosis - their role in signaling and organ function. Adv Drug Deliv Rev 121:43–56. https://doi.org/10.1016/j.addr.2017.07.014

    Article  CAS  PubMed  Google Scholar 

  21. Bhattacharyya S, Wu M, Fang F, Tourtellotte W, Feghali-Bostwick C, Varga J (2011) Early growth response transcription factors: key mediators of fibrosis and novel targets for anti-fibrotic therapy. Matrix Biol 30(4):235–242. https://doi.org/10.1016/j.matbio.2011.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ai K, Li X, Zhang P, Pan J, Li H, He Z et al (2022) Genetic or siRNA inhibition of MBD2 attenuates the UUO- and I/R-induced renal fibrosis via downregulation of EGR1. Mol Ther Nucleic Acids 28:77–86. https://doi.org/10.1016/j.omtn.2022.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cosgrove D, Dufek B, Meehan DT, Delimont D, Hartnett M, Samuelson G et al (2018) Lysyl oxidase like-2 contributes to renal fibrosis in Col4alpha3/Alport mice. Kidney Int 94(2):303–314. https://doi.org/10.1016/j.kint.2018.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gifford CC, Lian F, Tang J, Costello A, Goldschmeding R, Samarakoon R et al (2021) PAI-1 induction during kidney injury promotes fibrotic epithelial dysfunction via deregulation of klotho, p53, and TGF-beta1-receptor signaling. FASEB J 35(7):e21725. https://doi.org/10.1096/fj.202002652RR

    Article  CAS  PubMed  Google Scholar 

  25. Ebefors K, Wiener RJ, Yu L, Azeloglu EU, Yi Z, Jia F et al (2019) Endothelin receptor-A mediates degradation of the glomerular endothelial surface layer via pathologic crosstalk between activated podocytes and glomerular endothelial cells. Kidney Int 96(4):957–970. https://doi.org/10.1016/j.kint.2019.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Chen L, Gao C, Chen E, Lightle AR, Foulke L et al (2020) Loss of histone H3 K79 methyltransferase Dot1l facilitates Kidney fibrosis by upregulating endothelin 1 through histone deacetylase 2. J Am Soc Nephrol 31(2):337–349. https://doi.org/10.1681/ASN.2019070739

    Article  PubMed  Google Scholar 

  27. Liang G, Song L, Chen Z, Qian Y, Xie J, Zhao L et al (2018) Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism. Kidney Int 93(1):95–109. https://doi.org/10.1016/j.kint.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  28. Kumar S (2018) Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int 93(1):27–40. https://doi.org/10.1016/j.kint.2017.07.030

    Article  CAS  PubMed  Google Scholar 

  29. Kalaany NY, Mangelsdorf DJ (2006) LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol 68:159–191. https://doi.org/10.1146/annurev.physiol.68.033104.152158

    Article  CAS  PubMed  Google Scholar 

  30. Stossi F, Dandekar RD, Johnson H, Lavere P, Foulds CE, Mancini MG et al (2019) Tributyltin chloride (TBT) induces RXRA down-regulation and lipid accumulation in human liver cells. PLoS ONE 14(11):e0224405. https://doi.org/10.1371/journal.pone.0224405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ray J, Haughey C, Hoey C, Jeon J, Murphy R, Dura-Perez L et al (2020) miR-191 promotes radiation resistance of prostate cancer through interaction with RXRA. Cancer Lett 473:107–117. https://doi.org/10.1016/j.canlet.2019.12.025

    Article  CAS  PubMed  Google Scholar 

  32. Farina A, Gaetano C, Crescenzi M, Puccini F, Manni I, Sacchi A et al (1996) The inhibition of cyclin B1 gene transcription in quiescent NIH3T3 cells is mediated by an E-box. Oncogene 13(6):1287–1296

    CAS  PubMed  Google Scholar 

  33. Recazens E, Mouisel E, Langin D (2021) Hormone-sensitive lipase: sixty years later. Prog Lipid Res 82:101084. https://doi.org/10.1016/j.plipres.2020.101084

    Article  CAS  PubMed  Google Scholar 

  34. Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62(3):720–733. https://doi.org/10.1016/j.jhep.2014.10.039

    Article  CAS  PubMed  Google Scholar 

  35. Tan Z, Xiao L, Tang M, Bai F, Li J, Li L et al (2018) Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy. Theranostics 8(9):2329–2347. https://doi.org/10.7150/thno.21451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coleman RA (2019) It takes a village: channeling fatty acid metabolism and triacylglycerol formation via protein interactomes. J Lipid Res 60(3):490–497. https://doi.org/10.1194/jlr.S091843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang G, Bonkovsky HL, de Lemos A, Burczynski FJ (2015) Recent insights into the biological functions of liver fatty acid binding protein 1. J Lipid Res 56(12):2238–2247. https://doi.org/10.1194/jlr.R056705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J (2004) Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 25(5–6):495–520. https://doi.org/10.1016/j.mam.2004.06.004

    Article  CAS  PubMed  Google Scholar 

  39. Nwosu ZC, Battello N, Rothley M, Pioronska W, Sitek B, Ebert MP et al (2018) Liver cancer cell lines distinctly mimic the metabolic gene expression pattern of the corresponding human tumours. J Exp Clin Cancer Res 37(1):211. https://doi.org/10.1186/s13046-018-0872-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu S, Meng S, Xiang M, Ma H (2021) Phosphoenolpyruvate carboxykinase in cell metabolism: roles and mechanisms beyond gluconeogenesis. Mol Metab 53:101257. https://doi.org/10.1016/j.molmet.2021.101257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chao Y, Gao S, Wang X, Li N, Zhao H, Wen X et al (2018) Untargeted lipidomics based on UPLC-QTOF-MS/MS and structural characterization reveals dramatic compositional changes in serum and renal lipids in mice with glyoxylate-induced nephrolithiasis. J Chromatogr B Analyt Technol Biomed Life Sci 1095:258–266. https://doi.org/10.1016/j.jchromb.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  42. Lan C, Chen D, Liang X, Huang J, Zeng T, Duan X et al (2017) Integrative analysis of miRNA and mRNA expression profiles in calcium oxalate nephrolithiasis rat model. Biomed Res Int 2017:8306736. https://doi.org/10.1155/2017/8306736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S et al (2019) Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis 10(4):275. https://doi.org/10.1038/s41419-019-1358-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang X, Zhang Y, Han S, Chen H, Chen C, Ji L et al (2020) Overexpression of miR30c5p reduces cellular cytotoxicity and inhibits the formation of kidney stones through ATG5. Int J Mol Med 45(2):375–384. https://doi.org/10.3892/ijmm.2019.4440

    Article  CAS  PubMed  Google Scholar 

  45. Song Z, Zhang Y, Gong B, Xu H, Hao Z, Liang C (2019) Long noncoding RNA LINC00339 promotes renal tubular epithelial pyroptosis by regulating the miR-22-3p/NLRP3 axis in calcium oxalate-induced kidney stone. J Cell Biochem 120(6):10452–10462. https://doi.org/10.1002/jcb.28330

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Song J, Li Y, Shao J, Xie Z, Sun K (2020) Down-regulation of LncRNA CRNDE aggravates kidney injury via increasing MiR-181a-5p in sepsis. Int Immunopharmacol 79:105933. https://doi.org/10.1016/j.intimp.2019.105933

    Article  CAS  PubMed  Google Scholar 

  47. Xu P, Guan MP, Bi JG, Wang D, Zheng ZJ, Xue YM (2017) High glucose down-regulates microRNA-181a-5p to increase pro-fibrotic gene expression by targeting early growth response factor 1 in HK-2 cells. Cell Signal 31:96–104. https://doi.org/10.1016/j.cellsig.2017.01.012

    Article  CAS  PubMed  Google Scholar 

  48. Chen K, Huang X, Xie D, Shen M, Lin H, Zhu Y et al (2021) RNA interactions in right ventricular dysfunction induced type II cardiorenal syndrome. Aging (Albany NY) 13(3):4215–4241. https://doi.org/10.18632/aging.202385

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Wang Y, Kong M, Yang J (2020) MiR-22-3p suppresses sepsis-induced acute kidney injury by targeting PTEN. Biosci Rep. https://doi.org/10.1042/BSR20200527

  50. Ghibaudi M, Boido M, Green D, Signorino E, Berto GE, Pourshayesteh S et al (2021) miR-7b-3p exerts a dual role after spinal cord injury, by supporting plasticity and neuroprotection at cortical level. Front Mol Biosci 8:618869. https://doi.org/10.3389/fmolb.2021.618869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bi JG, Zheng JF, Li Q, Bao SY, Yu XF, Xu P et al (2019) MicroRNA-181a-5p suppresses cell proliferation by targeting Egr1 and inhibiting Egr1/TGF-beta/Smad pathway in hepatocellular carcinoma. Int J Biochem Cell Biol 106:107–116. https://doi.org/10.1016/j.biocel.2018.11.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (82173369, 82070692 and 31771511), Foundation strengthening program in technical field of China (2019-JCJQ-JJ-068).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Data collection and analysis were performed by LH, YS and JH. The first draft of the manuscript was written by LH and BY. JD edited the manuscript. Critical revision of the manuscript was written by ZG. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhiyong Guo or Bing Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Shi, Y., Hu, J. et al. Integrated analysis of mRNA-seq and miRNA-seq reveals the potential roles of Egr1, Rxra and Max in kidney stone disease. Urolithiasis 51, 13 (2023). https://doi.org/10.1007/s00240-022-01384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00240-022-01384-5

Keywords

Navigation