Skip to main content
Log in

Modified Seoul National University Renal Stone Complexity score for retrograde intrarenal surgery

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

The Seoul National University Renal Stone Complexity (S-ReSC) score is a well-validated tool for the prediction of stone-free rate (SFR) after percutaneous nephrolithotomy. We modified the S-ReSC score system for application to retrograde intrarenal surgery (RIRS) and evaluated this score. A total of 88 patients who underwent RIRS from 2011 to 2013 were included. The modified S-ReSC score was assigned according to the number of sites involved in the renal pelvis (#1), superior and inferior major calyceal groups (#2–3), and anterior and posterior minor calyceal groups of the superior (#4–5), middle (#6–7), and inferior calyx (#8–9). If the stone was in the inferior sites (#3, #8–9), one additional point per site was added to the original score. The SFR was examined according to the modified S-ReSC score. To evaluate the predictive accuracy, the area under the receiver operating characteristic curve (AUC) was used and compared with the Resorlu–Unsal Stone (RUS) score. The SFR was 85.2 % and was significantly decreased in the order of low (1–2: 94.2 %), medium (2–4: 84.0 %), and high (>4: 45.5 %) modified ReSC score groups (p < 0.001). AUCs of the modified S-ReSC score (0.806) and score group (0.766) were higher than the AUC of the RUS score (0.692; p = 0.012 and p = 0.040, respectively). The modified S-ReSC score predicts the SFR after RIRS well. Furthermore, its predictive accuracy is higher than that of the RUS score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ozturk U, Sener NC, Goktug HN, Nalbant I, Gucuk A, Imamoglu MA (2013) Comparison of percutaneous nephrolithotomy, shock wave lithotripsy, and retrograde intrarenal surgery for lower pole renal calculi 10-20 mm. Urol Int 91(3):345–349

    Article  PubMed  Google Scholar 

  2. Chen EH, Nemeth A (2011) Complications of percutaneous procedures. Am J Emerg Med 29(7):802–810

    Article  PubMed  Google Scholar 

  3. Türk CKT, Knoll T, Petrik A, Sarica K, Skolarikos A, Straub M, Seitz C (2013) Guidelines on Urolithiasis. European Association of Urology. http://www.uroweb.org/guidelines/online-guidelines. Updated 2013

  4. Bozkurt OF, Resorlu B, Yildiz Y, Can CE, Unsal A (2011) Retrograde intrarenal surgery versus percutaneous nephrolithotomy in the management of lower-pole renal stones with a diameter of 15 to 20 mm. J Endourol 25(7):1131–1135

    Article  PubMed  Google Scholar 

  5. Srisubat A, Potisat S, Lojanapiwat B, Setthawong V, Laopaiboon M (2009) Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database Syst Rev 4:CD007044

    PubMed  Google Scholar 

  6. Resorlu B, Unsal A, Gulec H, Oztuna D (2012) A new scoring system for predicting stone-free rate after retrograde intrarenal surgery: the “Resorlu-Unsal stone score”. Urology 80(3):512–518

    Article  PubMed  Google Scholar 

  7. Jeong CW, Jung JW, Cha WH, Lee BK, Lee S, Jeong SJ, Hong SK, Byun SS, Lee SE (2013) Seoul National University Renal Stone Complexity Score for predicting stone-free rate after percutaneous nephrolithotomy. PLoS One 8(6):e65888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Choo MS, Jeong CW, Jung JH, Lee SB, Jeong H, Son H, Kim HH, Oh SJ, Cho SY (2014) External validation and evaluation of reliability and validity of the S-ReSC scoring system to predict stone-free status after percutaneous nephrolithotomy. PLoS One 9(1):e83628

    Article  PubMed Central  PubMed  Google Scholar 

  9. Perks AE, Schuler TD, Lee J, Ghiculete D, Chung DG, DAH RJ, Pace KT (2008) Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72(4):765–769

    Article  PubMed  Google Scholar 

  10. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845

    Article  CAS  PubMed  Google Scholar 

  11. Johnson GB, Grasso M (2004) Exaggerated primary endoscope deflection: initial clinical experience with prototype flexible ureteroscopes. BJU Int 93(1):109–114

    Article  CAS  PubMed  Google Scholar 

  12. Poon M, Beaghler M, Baldwin D (1997) Flexible endoscope deflectability: changes using a variety of working instruments and laser fibers. J Endourol 11(4):247–249

    Article  CAS  PubMed  Google Scholar 

  13. Grasso M (2000) Ureteropyeloscopic treatment of ureteral and intrarenal calculi. Urol Clin North Am 27(4):623–631

    Article  CAS  PubMed  Google Scholar 

  14. Johnson GB, Portela D, Grasso M (2006) Advanced ureteroscopy: wireless and sheathless. J Endourol 20(8):552–555

    Article  PubMed  Google Scholar 

  15. Aboumarzouk OM, Monga M, Kata SG, Traxer O, Somani BK (2012) Flexible ureteroscopy and laser lithotripsy for stones >2 cm: a systematic review and meta-analysis. J Endourol 26(10):1257–1263

    Article  PubMed  Google Scholar 

  16. Sofer M, Watterson JD, Wollin TA, Nott L, Razvi H, Denstedt JD (2002) Holmium: YAG laser lithotripsy for upper urinary tract calculi in 598 patients. J Urol 167(1):31–34

    Article  PubMed  Google Scholar 

  17. Breda A, Ogunyemi O, Leppert JT, Lam JS, Schulam PG (2008) Flexible ureteroscopy and laser lithotripsy for single intrarenal stones 2 cm or greater—is this the new frontier? J Urol 179(3):981–984

    Article  PubMed  Google Scholar 

  18. Albanis S, Ather HM, Papatsoris AG, Masood J, Staios D, Sheikh T, Akhtar S, Buchholz N (2009) Inversion, hydration and diuresis during extracorporeal shock wave lithotripsy: does it improve the stone-free rate for lower pole stone clearance? Urol Int 83(2):211–216

    Article  PubMed  Google Scholar 

  19. Kosar A, Ozturk A, Serel TA, Akkus S, Unal OS (1999) Effect of vibration massage therapy after extracorporeal shockwave lithotripsy in patients with lower caliceal stones. J Endourol 13(10):705–707

    Article  CAS  PubMed  Google Scholar 

  20. Preminger GM (2006) Management of lower pole renal calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol Res 34(2):108–111

    Article  PubMed  Google Scholar 

  21. Kanao K, Nakashima J, Nakagawa K, Asakura H, Miyajima A, Oya M, Ohigashi T, Murai M (2006) Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy. J Urol 176(4 Pt 1):1453–1456 (discussion 1456–1457)

    Article  PubMed  Google Scholar 

  22. Yuruk E, Binbay M, Sari E, Akman T, Altinyay E, Baykal M, Muslumanoglu AY, Tefekli A (2010) A prospective, randomized trial of management for asymptomatic lower pole calculi. J Urol 183(4):1424–1428

    Article  PubMed  Google Scholar 

  23. Goktas C, Akca O, Horuz R, Gokhan O, Albayrak S, Sarica K (2011) SWL in lower calyceal calculi: evaluation of the treatment results in children and adults. Urology 78(6):1402–1406

    Article  PubMed  Google Scholar 

  24. Mishra S, Sabnis RB, Desai M (2012) Staghorn morphometry: a new tool for clinical classification and prediction model for percutaneous nephrolithotomy monotherapy. J Endourol 26(1):6–14

    Article  PubMed  Google Scholar 

  25. Thomas K, Smith NC, Hegarty N, Glass JM (2011) The Guy’s stone score—grading the complexity of percutaneous nephrolithotomy procedures. Urology 78(2):277–281

    Article  PubMed  Google Scholar 

  26. Ganpule AP, Desai MR (2011) Urolithiasis in kidneys with abnormal lie, rotation or form. Curr Opin Urol 21(2):145–153

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Seungjun Son, Ohseong Kwon, Jeong Min Park, and Hahn-Ey Lee for assisting with data retrieval and review.

Conflict of interest

There are no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Wook Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, JW., Lee, B.K., Park, Y.H. et al. Modified Seoul National University Renal Stone Complexity score for retrograde intrarenal surgery. Urolithiasis 42, 335–340 (2014). https://doi.org/10.1007/s00240-014-0650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-014-0650-7

Keywords

Navigation