Skip to main content
Log in

Effect of potential renal acid load of foods on urinary citrate excretion in calcium renal stone formers

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the influence of the potential renal acid load (PRAL) of the diet on the urinary risk factors for renal stone formation. The present series comprises 187 consecutive renal calcium stone patients (114 males, 73 females) who were studied in our stone clinic. Each patient was subjected to an investigation including a 24-h dietary record and 24-h urine sample taken over the same period. Nutrients and calories were calculated by means of food composition tables using a computerized procedure. Daily PRAL was calculated considering the mineral and protein composition of foods, the mean intestinal absorption rate for each nutrient and the metabolism of sulfur-containing amino acids. Sodium, potassium, calcium, magnesium, phosphate, oxalate, urate, citrate, and creatinine levels were measured in the urine. The mean daily PRAL was higher in male than in female patients (24.1±24.0 vs 16.1±20.1 mEq/day, P=0.000). A significantly (P=0.01) negative correlation (R=−0.18) was found between daily PRAL and daily urinary citrate, but no correlation between PRAL and urinary calcium, oxalate, and urate was shown. Daily urinary calcium (R=0.186, P=0.011) and uric acid (R=0.157, P=0.033) were significantly related to the dietary intake of protein. Daily urinary citrate was significantly related to the intakes of copper (R=0.178, P=0.015), riboflavin (R=0.20, P=0.006), piridoxine (R=0.169, P=0.021) and biotin (R=0.196, P=0.007). The regression analysis by stepwise selection confirmed the significant negative correlation between PRAL and urinary citrate (P=0.002) and the significant positive correlation between riboflavin and urinary citrate (P=0.000). Urinary citrate excretion of renal stone formers (RSFs) is highly dependant from dietary acid load. The computation of the renal acid load is advisable to investigate the role of diet in the pathogenesis of calcium stone disease and it is also a useful tool to evaluate the lithogenic potential of the diet of the individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleisch H (1978) Inhibitors and promoters of stone formation. Kidney Int 13:361–371

    Article  PubMed  CAS  Google Scholar 

  2. Hastings BA, McLean FC, Eichelberger L, Hall JL, Da Costa E (1934) The ionization of calcium, magnesium and strontium citrates. J Biol Chem 107:351–370

    CAS  Google Scholar 

  3. Bisaz S, Felix R, Neuman WF, Fleisch H (1978) Quantitative determination of inhibitors of calcium phosphate precipitation in whole urine. Miner Electrolyte Metab 1:74–83

    CAS  Google Scholar 

  4. Meyer JL, Smith LH (1975) Growth of calcium oxalate crystals: II. Inhibition by natural urinary crystal growth inhibitors. Invest Urol 13:31–35

    Article  PubMed  CAS  Google Scholar 

  5. Sutor DJ, Percival JM, Doonan S (1978) Isolation and identification of some urinary inhibitors of calcium phosphate formations. Clin Chim Acta 89:273–278

    Article  PubMed  CAS  Google Scholar 

  6. Kok DJ, Papapoulos SE, Bijovoet OLM (1986) Excessive crystal agglomeration with low citrate excretion in recurrent stone-formers. Lancet 1:1056–1058

    Article  PubMed  CAS  Google Scholar 

  7. Conway NS, Maitland AIL, Rennie J (1949) The urinary citrate excretion in patients with renal calculi. Br J Urol 21:30–38

    PubMed  CAS  Google Scholar 

  8. Hodgkinson A (1962) Citric acid excretion in normal adults and in patients with renal calculus. Clin Sci 23:203–212

    PubMed  CAS  Google Scholar 

  9. Hodgkinson A (1963) The relation between citric acid and calcium metabolism with particular reference to primary hyperparathyroidism and idiopathic hypercalciuria. Clin Sci 24:167–178

    PubMed  CAS  Google Scholar 

  10. Menon M, Mahle CJ (1983) Urinary citrate excretion in patients with renal calculi. J Urol 129:1158–1160

    PubMed  CAS  Google Scholar 

  11. Schwille PO, Scholz D, Schwille K, Leutschaft R, Goldberg I, Sigel A (1982) Citrate in urine and serum and associated variables in subgroups of urolithiasis. Results from an outpatient stone clinic. Nephron 31:194–202

    PubMed  CAS  Google Scholar 

  12. Welshman SG, McGeown MG (1976) Urinary citrate excretion in stone-formers and normal controls. Br J Urol 48:7–11

    Article  PubMed  CAS  Google Scholar 

  13. Parks JH, Coe FL (1986) A urinary calcium-citrate index for the evaluation of nephrolithiasis. Kidney Int 30:85–90

    Article  PubMed  CAS  Google Scholar 

  14. Trinchieri A, Mandressi A, Luongo P, Rovera F, Longo G (1992) Urinary excretion of citrate, glycosaminoglycans, magnesium and zinc in relation to age and sex in normal subjects and in patients who form calcium stones. Scand J Urol Nephrol 26:379–386

    PubMed  CAS  Google Scholar 

  15. Rudman D, Kutner MH, Redd SC II, Waters WC IV, Gerron GG, Bleier J (1982) Hypocitraturia in calcium nephrolithiasis. J Clin Endocrinol Metab 55:1052–1057

    PubMed  CAS  Google Scholar 

  16. Goldfarb S (1988) Dietary factors in the pathogenesis andprophylaxis of calciu nephrolithiasis. Kidney Int 34:544

    Article  PubMed  CAS  Google Scholar 

  17. Kok DJ, Iestra JA, Doorenbos CJ, Papapoulos SE (1990) The effects of dietary excess in animal protein and in sodium on the composition and the crystallization kinetics of calcium oxalate monohydrate in urines of healthy men. J Clin Endocrinol Metab 71:861

    PubMed  CAS  Google Scholar 

  18. Hamm LI (1990) Renal handling of citrate. Kidney Int 38:728–735

    Article  PubMed  CAS  Google Scholar 

  19. Adam WR, Koretsky AP, Weiner MW (1986) 31P-NMR in vivo measurement of renal intracellular pH: effect of acidosis and K+ depletion in rats. Am J Physiol 251:F904–F910

    PubMed  CAS  Google Scholar 

  20. Wright SH, Kippen I, Wright EM (1982) Effect of pH on the transport of Krebs cycle intermediates in renal brush border membranes. Biochem Biophys Res Commun 684:287–290

    CAS  Google Scholar 

  21. Remer T, Manz F (1995) Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc 95:791–797

    Article  PubMed  CAS  Google Scholar 

  22. Robertson WG, Peacock M, Hodgkinson A (1979) The effect of dietary changes on the incidence of urinary tract in the UK between 1958 and 1976. J Chronic Dis 32:469–476

    Article  PubMed  CAS  Google Scholar 

  23. Coe FL, Moran E, Kavalich AG (1976) The contribution of dietary purine over-consumption to hyperuricosuria in calcium oxalate stone formers. J Chronic Dis 29:793–800

    Article  PubMed  CAS  Google Scholar 

  24. Robertson WG, Peacock M, Heyburn PJ, Hanes F, Rutherford A, Clementson E, Swaminathan R, Clark PB (1979) Should recurrent calcium-containing stone-formers become vegetarians? Br J Urol 51:427–431

    PubMed  CAS  Google Scholar 

  25. Trinchieri A, Mandressi A, Luongo P, Longo G, Pisani E (1991) The influence of diet on urinary risk factors for stones in healthy subjects and idiopathic renal calcium stone formers. Br J Urol 67:230–236

    Article  PubMed  CAS  Google Scholar 

  26. Curhan GC, Willett WC, Rimm EB et al (1993) A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med 328:833–838

    Article  PubMed  CAS  Google Scholar 

  27. Lemann J Jr, Relman AS (1959) The relation of sulfur metabolism in acid-base balance and electrolyte excretion: the effects of DL-methionine in normal man. J Clin Invest 38:2215–2223

    PubMed  Google Scholar 

  28. Lemann J Jr, Lennon EJ, Goodman AD, Litzow JR, Relman AS (1965) The net balance of acid in subjects given large loads of acid or alkali. J Clin Invest 44:507–517

    PubMed  CAS  Google Scholar 

  29. Bushinsky DA, Wolbach W, Sessler NE et al (1993) Physico-chemical effect of acidosis on bone calcium flux and surface ion composition. J Bone Miner Res 8:93–102

    PubMed  CAS  Google Scholar 

  30. Simpson DP (1983) Citrate excretion: a window on renal metabolism. Am J Physiol 244:F223–F234

    PubMed  CAS  Google Scholar 

  31. Breslau NA, Brinkley L, Hill KD, Pak CYC (1988) Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J Clin Endocrinol Metab 6:140

    Google Scholar 

  32. Oh MS (1989) A new method for estimating G-I absorption of alkali. Kidney Int 36:915–917

    Article  PubMed  CAS  Google Scholar 

  33. Sakhaee K, Williams RH, Oh MS, Padalino P, Adams-Huet B, Whitson P, Pak CY (1993) Alkali absorption and citrate excretion in calcium nephrolithiasis. J Bone Miner Res 8:789–794

    Article  PubMed  CAS  Google Scholar 

  34. Morris RC, Schmidlin O, Tanaka M, Foreman A, Frassetto L, Sebastian A (1999) Differing effects of supplemental KCl and KHCO3: pathophysiological and clinical implications. Semin Nephrol 19:487–493

    PubMed  CAS  Google Scholar 

  35. Lemann J Jr, Pleuss JA, Gray RW et al (1991) Potassium administration reduces and potassium deprivation increases urinary calcium excretion in healthy adults. Kidney Int 39:973–983

    Article  PubMed  Google Scholar 

  36. Sakhaee K, Alpern R, Jacobson HR et al (1991) Contrasting effects of various potassium salts on renal citrate excretion. J Clin Endocrinol Metab 72:396–400

    Article  PubMed  CAS  Google Scholar 

  37. Maalouf NM, Sakhaee K, Parks JH, Coe FL, Adams-Huet B, Pak CY (2004) Association of urinary pH with body weight in nephrolithiasis. Kidney Int 65:1422

    Article  PubMed  Google Scholar 

  38. Licata AA, Bau E, Bartter FC, Cox G (1979) Effects of dietary protein on urinary calcium in normal patients and in patients with nephrolithiasis. Metabolism 28:895–900

    Article  PubMed  CAS  Google Scholar 

  39. Maurer M, Riesen W, Muser J, Hulter HN, Krapf R (2003) Neutralization of Western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans. Am J Physiol Renal Physiol 284:F32–F40

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Trinchieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinchieri, A., Lizzano, R., Marchesotti, F. et al. Effect of potential renal acid load of foods on urinary citrate excretion in calcium renal stone formers. Urol Res 34, 1–7 (2006). https://doi.org/10.1007/s00240-005-0001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-005-0001-9

Keywords

Navigation