Skip to main content
Log in

In Vitro Selection of a DNA Aptamer by Cell-SELEX as a Molecular Probe for Cervical Cancer Recognition and Imaging

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Aptamers have become the most promising recognition reagents in terms of early diagnosis and effective treatment of cancers. In this study, using cervical cancer as a model, we have identified a DNA aptamer specifically binding to cervical cancer cells with high affinity using the cell-SELEX (systematic evolution of ligands by exponential enrichment) method, in which a negative selection was carried out using normal epithelial cells as control. The binding abilities of 6 selected truncated aptamers were determined by laser confocal fluorescence microscopy and flow cytometry, while most of them only recognize the target cells and do not bind the control cells, and the aptamer C-9S with 51-mer shows the best binding affinity to Ca Ski cells (target cells) with a dissociation constant value of 19.3 ± 2.9 nM. Moreover, at physiological temperature, C-9S remains its specific recognition capability to Ca Ski cells as well. Meanwhile, C-9S shows a similar binding ability to another cervical cancer cells (HeLa). Therefore, on the basis of its excellent targeting properties and inherent functional versatility of aptamer, C-9S holds great potential to be a molecular probe for early detection, in vivo imaging, and targeted delivery for further researches in cancer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, zur Hausen H (1984) A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J 3:1151–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerchia L, Duconge F, Pestourie C, Boulay J, Aissouni Y, Gombert K, Tavitian B, de Franciscis V, Libri D (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 3:e123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YM, Donovan MJ, Tan W (2013) Using aptamers for cancer biomarker discovery. J Nucleic Acids 2013: 817350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z, Meng L, Smith JE, Tan W (2008) Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3:991–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA 100:15416–15421

    Article  CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Engelberg S, Modrejewski J, Walter JG, Livney YD, Assaraf YG (2018) Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles. Oncotarget 9:20993–21006

    Article  PubMed  PubMed Central  Google Scholar 

  • Esposito CL, Catuogno S, de Franciscis V, Cerchia L (2011) New insight into clinical development of nucleic acid aptamers. Discov Med 11:487–496

    PubMed  Google Scholar 

  • Ferrandina G, Macchia G, Legge F, Deodatod F, Fornib F, Digesud C, Caronec V, Morgantid AG, Scambia G (2008) Squamous cell carcinoma antigen in patients with locally advanced cervical carcinoma undergoing preoperative radiochemotherapy: association with pathological response to treatment and clinical outcome. Oncology 74:42–49

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Sun L, Wang F, Liu X, Yan Z, Wang M, Zhang L, Tian Z, Liu Z, You J (2019) Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chem Eng J 356:994–1002

    Article  CAS  Google Scholar 

  • Graham JC, Zarbl H (2012) Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells. PLoS ONE 7(4):e36103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubisic G (2007) Limitations of colposcopy in early invasive cervical cancer detection. Coll Antropol 31:135–138

    PubMed  Google Scholar 

  • Ireson CR, Kelland LR (2006) Discovery and development of anticancer aptamers. Mol Cancer Ther 5:2957–2962

    Article  CAS  PubMed  Google Scholar 

  • Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  PubMed  Google Scholar 

  • Li X, Zhang W, Liu L, Zhu Z, Ouyang G, An Y, Zhao C, Yang CJ (2014) In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. Anal Chem 86:6596–6603

    Article  CAS  PubMed  Google Scholar 

  • Li X, An Y, Jin J, Zhu Z, Hao L, Liu L, Shi Y, Fan D, Ji T, Yang CJ (2015) Evolution of DNA aptamers through in vitro metastatic-cell-based systematic evolution of ligands by exponential enrichment for metastatic cancer recognition and imaging. Anal Chem 87:4941–4948

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Lin B, Lan X (2013) Aptamers: a promising tool for cancer imaging, diagnosis, and therapy. J Cell Biochem 114:250–255

    Article  CAS  PubMed  Google Scholar 

  • Lyu Y, Chen G, Shangguan D, Zhang L, Wan S, Wu Y, Zhang H, Duan L, Liu C, You M, Wang J, Tan W (2016) Generating cell targeting aptamers for nanotheranostics using cell-SELEX. Theranostics 6:1440–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng H-M, Fu T, Zhang X-B, Tan W (2015) Cell-SELEX-based aptamer-conjugated nanomaterials for cancer diagnosis and therapy. Natl Sci Rev 2:71–84

    Article  CAS  Google Scholar 

  • Mitchell DG, Snyder B, Coakley F, Reinhold C, Thomas G, Amendola M, Schwartz LH, Woodward P, Pannu H, Hricak H (2006) Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol 24:5687–5694

    Article  PubMed  Google Scholar 

  • Ohuchi SP, Ohtsu T, Nakamura Y (2006) Selection of RNA aptamers against recombinant transforming growth factor-β type III receptor displayed on cell surface. Biochimie 88:897–904

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Cui C, Wan S, Jiang Y, Zhang L, Xia L, Li L, Li X, Tan W (2018) Bioapplications of cell-SELEX-generated aptamers in cancer diagnostics, therapeutics, theranostics and biomarker discovery: a comprehensive review. Cancers 10:47

    Article  CAS  PubMed Central  Google Scholar 

  • Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5:1169–1185

    Article  CAS  PubMed  Google Scholar 

  • Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Nat Acad Sci USA 103:11838–11843

    Article  CAS  PubMed  Google Scholar 

  • Shangguan D, Tang Z, Mallikaratchy P, Xiao Z, Tan W (2007) Optimization and modifications of aptamers selected from live cancer cell lines. ChemBioChem 8:603–606

    Article  CAS  PubMed  Google Scholar 

  • Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W (2008a) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7:2133–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Li Y, Cardona D, Witek RP, Liu C, Tan W (2008b) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80:721–728

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhang J, He J, Liu D, Meng X, Huang T, He H (2019) A method of detecting two tumor markers (p-hydroxybenzoic acid and pcresol) in human urine using a porous magnetic β-cyclodextrine polymer as solid phase extractant, an alternative for early gastric cancer diagnosis. Talanta 191: 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29

    Article  PubMed  Google Scholar 

  • Song KM, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors 12:612–631

    Article  PubMed  Google Scholar 

  • Sun Y, Wang Y, Lau C, Chen G, Lu J (2018) Hybridization-initiated exonuclease resistance strategy for simultaneous detection of multiple microRNAs. Talanta 190:248–254

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Parekh P, Turner P, Moyer RW, Tan W (2009) Generating aptamers for recognition of virus-infected cells. Clin Chem 55:813–822

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Rong Y, Fang M, Yuan J, Peng C, Liu S, Li Y (2013) Recognition and capture of metastatic hepatocellular carcinoma cells using aptamer conjugated quantum dots and magnetic particles. Biomaterials 34:3816–3827

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang Y, Chen Y, Hong S, Sun Y, Sun N, Pei R (2017) In vitro selection of DNA aptamers against renal cell carcinoma using living cell-SELEX. Talanta 175:235–242

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhao Z, Bai H, Fu T, Yang C, Hu X, Liu Q, Champanhac C, Teng IT, Ye M, Tan W (2015) DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics 5:985–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Teng IT, Zhang L, Delgado S, Champanhac C, Cansiz S, Wu C, Shan H, Tan W (2015) Molecular recognition of human liver cancer cells using DNA aptamers generated via Cell-SELEX. PLoS ONE 10:e0125863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen Y, Han D, Ocsoy I, Tan W (2010) Aptamers selected by cell-SELEX for application in cancer studies. Bioanalysis 2:907–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Rossi J (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 16:181–202

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) M-fold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Nos. 21775160, 21575154), the International Partnership Program of Chinese Academy of Sciences (No. 121E32KYSB20170025), the Science Foundation of Jiangsu Province (Nos. BE2016680, BK20161262, BE2018665, EK20180250), and the Jiangsu Province Six Talent Peaks program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Zhang or Renjun Pei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 644 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Gao, T., Luo, Y. et al. In Vitro Selection of a DNA Aptamer by Cell-SELEX as a Molecular Probe for Cervical Cancer Recognition and Imaging. J Mol Evol 87, 72–82 (2019). https://doi.org/10.1007/s00239-019-9886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-019-9886-8

Keywords

Navigation