Skip to main content
Log in

Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported—high thermostability and high catalytic activity—compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered “superior” to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akanuma S, Nakajima Y, Yokobori S, Kimura M, Nemoto N, Mase T, Miyazono K, Tanokura M, Yamagishi A (2013) Experimental evidence for the thermophilicity of ancestral life. Proc Natl Acad Sci USA 110:11067–11072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L, Olmedo G (2010) Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genom 11:332–348

    Article  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. doi:10.1038/msb4100050

    Google Scholar 

  • Battistuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4:44–57

    Article  PubMed Central  PubMed  Google Scholar 

  • Bershtein S, Mu W, Shakhnovich EI (2012) Soluble oligomerization provides a beneficial fitness effect on destabilizing mutations. Proc Natl Acad Sci USA 109:4857–4862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bershtein S, Mu W, Serohijos AWR, Zhou J, Shakhnovich EI (2013) Protein quality control acts on folding intermediates to shape the effects of mutations on organismal fitness. Mol Cell 49:133–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bloom JD, Silberg JJ, Wilke CO, Drummond DA, Adami C, Arnold FH (2005) Thermodynamic prediction of protein neutrality. Proc Natl Acad Sci USA 102:606–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci USA 103:5869–5874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bloom JD, Raval A, Wilke CO (2007) Thermodynamics of neutral protein evolution. Genetics 175:255–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bridgham JT, Carroll SM, Thornton JW (2006) Evolution of hormone-receptor complexity by molecular exploitation. Science 312:97–101

    Article  CAS  PubMed  Google Scholar 

  • Bridgham JT, Ortlund EA, Thornton JW (2009) An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 461:515–519

    Article  CAS  PubMed  Google Scholar 

  • Bridgham JT, Eick GN, Larroux C, Deshpande K, Harms MJ, Gauthier MEA, Ortlund EA, Degnan BM, Thornton JW (2010) Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biol 8:e1000497

    Article  PubMed Central  PubMed  Google Scholar 

  • Butzin NC, Lapierre P, Green AG, Swithers KS, Gogarten JP, Noll KM (2013) Reconstructed ancestral myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants. PLoS ONE 8:e84300

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang BS, Jonsson K, Kazmi MA, Donoghue MJ, Sakmar TP (2002) Recreating a functional ancestral archosaur visual pigment. Mol Biol Evol 19:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Chinen A, Matsumoto Y, Kawamura S (2005) Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation. Mol Biol Evol 22:1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Cox RA, Cook GM (2007) Growth regulation in the mycobacterial cell. Curr Mol Med 7:231–245

    Article  CAS  PubMed  Google Scholar 

  • DePristo MA, Weinreich DM, Hartl DL (2005) Missense meanderings in sequence space: a biophysical view of protein evolution. Nature 6:678–687

    CAS  Google Scholar 

  • Dutheil J, Boussau B (2008) Non-homogeneous models of sequence evolution in the Bio ++ suite of libraries and programs. BMC Evol Biol 8:255

    Article  PubMed Central  PubMed  Google Scholar 

  • Eick GN, Colucci JK, Harms MJ, Ortlund EA, Thornton JW (2012) Evolution of minimal specificity and promiscuity in steroid hormone receptors. PLoS Genet 8:e1003072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306

    Article  CAS  PubMed  Google Scholar 

  • Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW (2012) Evolution of increased complexity in a molecular machine. Nature 481:360–364

    PubMed Central  CAS  PubMed  Google Scholar 

  • Freundlich M, Burns RO, Umbarger HE (1962) Control of isoleucine, valine, and leucine biosynthesis. I. Multivalent repression. Proc Natl Acad Sci USA 48:1804–1808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaucher EA, Thomson JM, Burgan MF, Benner SA (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425:285–288

    Article  CAS  PubMed  Google Scholar 

  • Gaucher EA, Govindarajan S, Ganesh OK (2008) Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451:704–707

    Article  CAS  PubMed  Google Scholar 

  • Groussin M, Hobbs JK, Szöllősi GJ, Gribaldo S, Arcus VL, Gouy M (2015) Toward more accurate ancestral protein genotype-phenotype reconstructions with the use of species tree-aware gene trees. Mol Biol Evol 32:13–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall BG, Acar H, Nandipati A, Barlow M (2014) Growth rates made easy. Mol Biol Evol 31:232–238

    Article  CAS  PubMed  Google Scholar 

  • Harms MJ, Thornton JW (2013) Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet 14:559–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hart KM, Harms MJ, Schmidt BH, Elya C, Thornton JW, Marqusee S (2014) Thermodynamic system drift in protein evolution. PLoS Biol 12:e1001994

    Article  PubMed Central  PubMed  Google Scholar 

  • Haughn GW, Wessler SR, Gemmill RM, Calvo JM (1986) High A + T content conserved in DNA sequences upstream of leuABCD in Escherichia coli and Salmonella typhimurium. J Bacteriol 166:1113–1117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hobbs JK, Shepherd C, Saul DJ, Demetras NJ, Haaning S, Monk CR, Daniel RM, Arcus VL (2012) On the origin and evolution of thermophily: reconstruction of functional Precambrian enzymes from ancestors of Bacillus. Mol Biol Evol 29:825–835

    Article  CAS  PubMed  Google Scholar 

  • Jermann TM, Opitz JG, Stackhouse J, Benner SA (1995) Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature 374:57–59

    Article  CAS  PubMed  Google Scholar 

  • Lenski RE, Rose MR, Simpson SC, Tadler SC (1991) Long-term experimental evolution in Escherichia coli: I. Adaptation and divergence during 2,000 generations. Am Nat 138:1315–1341

    Article  Google Scholar 

  • Liberles DA, Teichmann SA, Bahar I et al (2012) The interface of protein structure, protein biophysics, and molecular evolution. Protein Sci 21:769–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malcolm BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC (1990) Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature 345:86–89

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki J, Nakaya S, Suzuki T, Tamakoshi M, Oshima T, Yamagishi A (2001) Ancestral residues stabilizing 3-isopropylmalate dehydrogenase of an extreme thermophile: experimental evidence supporting the thermophilic common ancestor hypothesis. J Biochem 129:777–782

    Article  CAS  PubMed  Google Scholar 

  • Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42:D358–D363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parsell DA, Sauer RT (1989) The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J Biol Chem 264:7590–7595

    CAS  PubMed  Google Scholar 

  • Perez-Jimenez R, Ingles-Prieto A, Zhao ZM, Sanchez-Romero I, Alegre-Cebollada J, Kosuri P, Garcia-Manyes S, Kappock TJ, Tanokura M, Holmgren A, Sanchez-Ruiz JM, Gaucher EA, Fernandez JM (2011) Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol 18:592–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prentice EJ (2013) Characterisation of enzyme evolution through ancestral enzyme reconstruction. Dissertation, University of Waikato

  • Risso VA, Gavira JA, Mejia-Carmona DF, Gaucher EA, Sanchez-Ruiz JM (2013) Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian β-lactamases. J Am Chem Soc 135:2899–2902

    Article  CAS  PubMed  Google Scholar 

  • Serohijos AWR, Shakhnovich EI (2014) Merging molecular mechanism and evolution: theory and computation at the interface of biophysics and evolutionary population genetics. Curr Opin Struct Biol 26:84–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68

    Article  CAS  PubMed  Google Scholar 

  • Soskine M, Tawfik DS (2010) Mutational effects and the evolution of new protein functions. Nat Rev Genet 11:572–582

    Article  CAS  PubMed  Google Scholar 

  • Stackhouse J, Presnell SR, McGeehan GM, Nambiar KP, Benner SA (1990) The ribonuclease from an extinct bovid ruminant. FEBS Lett 262:104–106

    Article  CAS  PubMed  Google Scholar 

  • Studer RA, Christin PA, Williams MA, Orengo CA (2014) Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. Proc Natl Acad Sci USA 111:2223–2228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taverna DM, Goldstein RA (2002) Why are proteins marginally stable? Proteins 46:105–109

    Article  CAS  PubMed  Google Scholar 

  • Tokiriki N, Tawfik DS (2009) Stability effects of mutations and protein evolvability. Curr Opin Struct Biol 19:596–604

    Article  Google Scholar 

  • Tomala K, Pogoda E, Jakubowska A, Korona R (2014) Fitness costs of minimal sequence alterations causing protein instability and toxicity. Mol Biol Evol 31:703–707

    Article  CAS  PubMed  Google Scholar 

  • Vartak NB, Liu L, Wang BM, Berg CM (1991) A functional leuABCD operon is required for leucine synthesis by the tyrosine-repressible transaminase in Escherichia coli K-12. J Bacteriol 173:3864–3871

    PubMed Central  CAS  PubMed  Google Scholar 

  • Voordeckers K, Brown CA, Vanneste K, van der Zande E, Voet A, Maere S, Verstrepen KJ (2012) Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biol 10:e1001446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward JB Jr, Zahler SA (1973) Regulation of leucine biosynthesis in Bacillus subtilis. J Bacteriol 116:727–735

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe K, Yamagishi A (2006) The effects of multiple ancestral residues on the Thermus thermophilus 3-isopropylmalate dehydrogenase. FEBS Lett 580:3867–3871

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Ohkuri T, Yokobori S, Yamagishi A (2006) Designing thermostable proteins: ancestral mutants of 3-isopropylmalate dehydrogenase designed by using a phylogenetic tree. J Mol Biol 355:664–674

    Article  CAS  PubMed  Google Scholar 

  • Williams PD, Pollock DD, Blackburne BP, Golstein RA (2006) Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol 2:e69

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang Z (2006) Computational molecular evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama S, Yang H, Starmer WT (2008) Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates. Genetics 179:2037–2043

    Article  PubMed Central  PubMed  Google Scholar 

  • Zeldovich KB, Chen P, Shakhnovich EI (2007) Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc Natl Acad Sci USA 104:16152–16157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Jonathan Abell for his assistance with statistical analysis. This work was supported by a research grant from the Marsden Fund of New Zealand awarded to VLA and a University of Waikato Research Trust Contestable Fund grant awarded to JKH. EJP was supported by a number of Masters scholarships from the University of Waikato. MG was supported by the French Agence Nationale de la Recherche (ANR) and is a contributor to the Ancestrome project (ANR-10-BINF-01-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joanne K. Hobbs or Vickery L. Arcus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (JPEG 1306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hobbs, J.K., Prentice, E.J., Groussin, M. et al. Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties. J Mol Evol 81, 110–120 (2015). https://doi.org/10.1007/s00239-015-9697-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-015-9697-5

Keywords

Navigation