Skip to main content
Log in

Transfer RNA Gene Numbers may not be Completely Responsible for the Codon Usage Bias in Asparagine, Isoleucine, Phenylalanine, and Tyrosine in the High Expression Genes in Bacteria

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2012

Abstract

It is generally believed that the effect of translational selection on codon usage bias is related to the number of transfer RNA genes in bacteria, which is more with respect to the high expression genes than the whole genome. Keeping this in the background, we analyzed codon usage bias with respect to asparagine, isoleucine, phenylalanine, and tyrosine amino acids. Analysis was done in seventeen bacteria with the available gene expression data and information about the tRNA gene number. In most of the bacteria, it was observed that codon usage bias and tRNA gene number were not in agreement, which was unexpected. We extended the study further to 199 bacteria, limiting to the codon usage bias in the two highly expressed genes rpoB and rpoC which encode the RNA polymerase subunits β and β′, respectively. In concordance with the result in the high expression genes, codon usage bias in rpoB and rpoC genes was also found to not be in agreement with tRNA gene number in many of these bacteria. Our study indicates that tRNA gene numbers may not be the sole determining factor for translational selection of codon usage bias in bacterial genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arnold HH, Keith G (1977) The nucleotide sequence of phenylalanine tRNA from Bacillus subtilis. Nucl Acids Res 4:2821–2829

    Article  PubMed  CAS  Google Scholar 

  • Bossi L, Roth JR (1980) The influence of codon context on genetic code translation. Nature 286:123–127

    Article  PubMed  CAS  Google Scholar 

  • Bulmer M (1987) Coevolution of codon usage and tRNA abundance. Nature 325:728–730

    Article  PubMed  CAS  Google Scholar 

  • Bulmer M (1991) The selection–mutation–drift theory of synonymous codon usage. Genetics 129:897–907

    PubMed  CAS  Google Scholar 

  • Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH (2004) Codon usage between genomes is constrained by genome wide mutational processes. Proc Natl Acad Sci USA 101:3480–3485

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Nilsson L, Kurland CG (1996) Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260:649–663

    Article  PubMed  CAS  Google Scholar 

  • dos Reis M, Wernisch L (2009) Estimating translational selection in eukaryotic genomes. Mol Biol Evol 26:451–461

    Article  PubMed  Google Scholar 

  • Duret L (2000) tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet 16:287–289

    Article  PubMed  CAS  Google Scholar 

  • Ermolaeva MD (2001) Synonymous codon usage in bacteria. Curr Issues Mol Biol 3:91–97

    PubMed  CAS  Google Scholar 

  • Fedorov A, Saxonov S, Gilbert W (2002) Regularities of context-dependent codon bias in eukaryotic genes. Nucl Acids Res 30:1192–1197

    Article  PubMed  CAS  Google Scholar 

  • Francino MP, Ochman H (1997) Strand asymmetries in DNA evolution. Trends Genet 13:240–245

    Article  PubMed  CAS  Google Scholar 

  • Gelfand MS, Koonin EV (1997) Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucl Acids Res 25:2430–2439

    Article  PubMed  CAS  Google Scholar 

  • Gouy M (1987) Codon contexts in enterobacterial and coliphage genes. Mol Biol Evol 4:426–444

    PubMed  CAS  Google Scholar 

  • Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucl Acids Res 10:7055–7074

    Article  PubMed  CAS  Google Scholar 

  • Grosjean H, Fiers W (1982) Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209

    Article  PubMed  CAS  Google Scholar 

  • Harada F, Nishimura S (1972) Possible anticodon sequences of tRNAhis, tRNAasn, and tRNAasp from Escherichia coli B. Universal presence of nucleoside Q in the first position of the anticodon of these transfer ribonucleic acids. Biochemistry 11:301–308

    Article  PubMed  CAS  Google Scholar 

  • Hershberg R, Petrov DA (2009) General rules for optimal codon choice. PLoS Genet 5:e1000556

    Article  PubMed  Google Scholar 

  • Hershberg R, Petrov DA (2010) Evidence that mutation is universally biased towards AT in bacteria. PLoS Genet 6:e1001115

    Article  PubMed  Google Scholar 

  • Higgs PG, Ran W (2008) Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage. Mol Biol Evol 25:2279–2291

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand F, Meyer A, Eyre-Walker A (2010) Evidence of selection upon genomic GC-content in bacteria. PLoS Genet 6:e1001107

    Article  PubMed  Google Scholar 

  • Ikemura T (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes, a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 151:389–409

    Article  PubMed  CAS  Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    PubMed  CAS  Google Scholar 

  • Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008) Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9:102

    Article  PubMed  Google Scholar 

  • Kanaya S, Yamada Y, Kudo Y, Ikemura T (1999) Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species specific diversity of codon usage based on multivariate analysis. Gene 238:143–155

    Article  PubMed  CAS  Google Scholar 

  • Karlin S, Campbell AM, Mrázek J (1998) Comparative DNA analysis across diverse genomes. Annu Rev Genet 32:185–225

    Article  PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genome sequences. Nucl Acid Res 25:955–964

    CAS  Google Scholar 

  • Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84:166–169

    Article  PubMed  CAS  Google Scholar 

  • Osawa S, Jukes TH, Watanabe K, Muto A (1992) Recent evidence for evolution of the genetic code. Microbiol Rev 56:229–264

    PubMed  CAS  Google Scholar 

  • Percudani R, Pavesi A, Ottonello S (1997) Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol 268:322–330

    Article  PubMed  CAS  Google Scholar 

  • Ran W, Higgs PG (2010) The influence of anticodon–codon interactions and modified bases on codon usage bias in bacteria. Mol Biol Evol 27:2129–2140

    Article  PubMed  CAS  Google Scholar 

  • Rocha EPC (2004) Codon usage bias from tRNA’s point of view, redundancy, specialization, and efficient decoding for translation optimization. Genome Res 14:2279–2286

    Article  PubMed  CAS  Google Scholar 

  • Rocha EPC, Feil EJ (2010) Mutational patterns cannot explain genome composition: are there any neutral sites in the genomes of bacteria? PLoS Genet 6:e1001104

    Article  PubMed  Google Scholar 

  • Salser W (1969) The influence of the reading context upon the suppression of nonsense codons. Mol Gen Genet 105:125–130

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Li WH (1986a) An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24:28–38

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Li WH (1986b) Codon usage in regulatory genes in Escherichia coli does not reflect selection for “rare” codons. Nucl Acids Res 14:7737–7749

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE (2005) Variation in the strength of selected codon usage bias among bacteria. Nucl Acids Res 33:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Shpaer EG (1986) Constraints on codon context in Escherichia coli genes. Their possible role in modulating the efficiency of translation. J Mol Biol 188:555–564

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Supek, the Rudjer Boskovic Institute, Croatia, for providing information for retrieving transcriptome data from the NCBI. We extend our thanks to Mrs. Madhusmita Dash, Qr. No. C-83, Tezpur University, for writing the C program for rank calculation. We also thank Dr. B.R. Powdel, Darang College, Tezpur, for his comments on the manuscript. We thank the two anonymous reviewers for their helpful comments on the previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvendra Kumar Ray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 700 kb)

Supplementary material 2 (DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satapathy, S.S., Dutta, M., Buragohain, A.K. et al. Transfer RNA Gene Numbers may not be Completely Responsible for the Codon Usage Bias in Asparagine, Isoleucine, Phenylalanine, and Tyrosine in the High Expression Genes in Bacteria. J Mol Evol 75, 34–42 (2012). https://doi.org/10.1007/s00239-012-9524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-012-9524-1

Keywords

Navigation