Skip to main content
Log in

Molecular Phylogeny, Classification and Evolution of Conopeptides

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Conopeptides are toxins expressed in the venom duct of cone snails (Conoidea, Conus). These are mostly well-structured peptides and mini-proteins with high potency and selectivity for a broad range of cellular targets. In view of these properties, they are widely used as pharmacological tools and many are candidates for innovative drugs. The conopeptides are primarily classified into superfamilies according to their peptide signal sequence, a classification that is thought to reflect the evolution of the multigenic system. However, this hypothesis has never been thoroughly tested. Here we present a phylogenetic analysis of 1,364 conopeptide signal sequences extracted from GenBank. The results validate the current conopeptide superfamily classification, but also reveal several important new features. The so-called “cysteine-poor” conopeptides are revealed to be closely related to “cysteine-rich” conopeptides; with some of them sharing very similar signal sequences, suggesting that a distinction based on cysteine content and configuration is not phylogenetically relevant and does not reflect the evolutionary history of conopeptides. A given cysteine pattern or pharmacological activity can be found across different superfamilies. Furthermore, a few conopeptides from GenBank do not cluster in any of the known superfamilies, and could represent yet-undefined superfamilies. A clear phylogenetically based classification should help to disentangle the diversity of conopeptides, and could also serve as a rationale to understand the evolution of the toxins in the numerous other species of conoideans and venomous animals at large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar MB, Lopez-Vera E, Ortiz E, Becerril B, Possani LD, Olivera BM, de la Heimer Cotera EP (2005) A novel conotoxin from Conus delessertii with posttranslationally modified lysine residues. Biochemistry 44:11130–11136

    Article  PubMed  CAS  Google Scholar 

  • Aguilar MB, Chan de la Rosa RA, Falcon A, Olivera BM, de la Heimer Cotera EP (2009) Peptide pal9a from the venom of the turrid snail Polystira albida from the Gulf of Mexico: purification, characterization, and comparison with P-conotoxin-like (framework IX) conoidean peptides. Peptides 30:467–476

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol. 340(4):783–795

    Article  PubMed  Google Scholar 

  • Biass D, Dutertre S, Gerbault A, Menou J-L, Offord R, Favreau P, Stöcklin R (2009) Comparative proteomic study of the venom of the piscivorous cone snail Conus consors. J Proteomics 72:210–218

    Article  PubMed  CAS  Google Scholar 

  • Biggs JS, Watkins M, Puillandre N, Ownby JP, Lopez-Vera E, Christensen S, Moreno KJ, Bernaldez J, Licea-Navarro A, Showers Corneli P, Olivera BM (2010) Evolution of Conus peptide toxins: analysis of Conus californicus Reeve, 1844. Mol Phylogenet Evol 56:1–12

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:144–222

    Article  PubMed  CAS  Google Scholar 

  • Bouchet P, Lozouet P, Sysoev AV (2009) An inordinate fondness for turrids. Deep Sea Res II 56:1724–1731

    Article  Google Scholar 

  • Cabang AP, Imperial JS, Gajewiak J, Watkins M, Showers Corneli P, Olivera BM, Concepcion GP (2011) Characterization of a venom peptide from a crassispirid gastropod. Toxicon 58:672–680

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Duda TF (2012) Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. Mol Biol Evol. Advance access

  • Conticello SG, Pilpel Y, Glusman G, Fainzilber M (2000) Position-specific codon conservation in hypervariable gene families. Trends Genet 16:57–59

    Article  PubMed  CAS  Google Scholar 

  • Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M (2001) Mechanisms for evolving hypervariability: the case of conopeptides. Mol Biol Evol 18:120–131

    Article  PubMed  CAS  Google Scholar 

  • Craig AG, Zafaralla G, Cruz LJ, Santos AD, Hillyard DR, Dykert J, Rivier J, Gray WR, Imperial J, DelaCruz RG, Sporning A, Terlau H, West PJ, Yoshikami D, Olivera BM (1998) An O-glycosylated neuroexcitatory Conus peptide. Biochemistry 37:16019–16025

    Article  PubMed  CAS  Google Scholar 

  • Craig AG, Norberg T, Griffin D, Hoeger C, Akhtar M, Schmidt K, Low W, Dykert J, Richelsoni E, Navarro V, Mazella J, Watkins M, Hillyard DR, Imperial J, Cruz LJ, Olivera BM (1999) Contulakin-G, an O-glycosylated invertebrate neurotensin. J Biol Chem 274:13752–13759

    Article  PubMed  CAS  Google Scholar 

  • Daly NL, Craik DJ (2009) Structural studies of conotoxins. IUBMB Life 61:144–150

    Article  PubMed  CAS  Google Scholar 

  • Davis J, Jones A, Lewis RJ (2009) Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS. Peptides 30:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Duda TF (2008) Differentiation of venoms of predatory marine gastropods: divergence of orthologous toxin genes of closely related Conus species with different dietary specializations. J Mol Evol 67:315–321

    Article  PubMed  CAS  Google Scholar 

  • Duda TF, Kohn AJ (2005) Species-level phylogeography and evolutionary history of the hyperdiverse marine gastropod genus Conus. Mol Phylogenet Evol 34:257–272

    Article  PubMed  Google Scholar 

  • Duda JTF, Lee T (2009) Ecological release and venom evolution of a predatory marine Snail at Easter Island. PLoS One 4:e5558

    Article  PubMed  Google Scholar 

  • Duda TF, Palumbi SR (1999) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc Natl Acad Sci 96:6820–6823

    Article  PubMed  CAS  Google Scholar 

  • Duda TF, Palumbi SR (2000) Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails. Mol Biol Evol 17:1286–1293

    Article  PubMed  CAS  Google Scholar 

  • Duda TF, Palumbi SR (2004) Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus Conus. Proc Royal Soc B 271:1165–1174

    Article  CAS  Google Scholar 

  • Duda TF, Remigio A (2008) Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails. Mol Ecol 17:3018–3032

    Article  PubMed  CAS  Google Scholar 

  • Dutertre S, Biass D, Stöcklin R, Favreau P (2010) Dramatic intraspecimen variations within the injected venom of Conus consors: an unsuspected contribution to venom diversity. Toxicon 55:1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Espiritu DJD, Watkins M, Dia-Monje V, Cartier GE, Cruz LE, Olivera BM (2001) Venomous cone snails: molecular phylogeny and the generation of toxin diversity. Toxicon 39:1899–1916

    Article  PubMed  CAS  Google Scholar 

  • Favreau P, Stöcklin R (2009) Marine snail venoms: use and trends in receptor and channel neuropharmacology. Curr Opin Pharmacol 9:594–601

    Article  PubMed  CAS  Google Scholar 

  • Favreau P, Benoit E, Hocking E, Carlier L, D’hoedt D, Leipold E, Markgraf D, Schlumberger S, Cordova M, Gaertner H, Paolini-Bertrand M, Hartley O, Tytgat J, Heinemann S, Bertrand D, Boelens R, Stöcklin R, Molgo J (2012) A novel mu-conopeptide, CnIIIC, exerts potent and preferential inhibition of NaV1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors. Br J Pharmacol (in press)

  • Fedosov AE (2007) Anatomy of accessory rhynchodeal organs of Veprecula vepratica and Tritonoturris subrissoides: new types of foregut morphology in Raphitominae (Conoidea). Ruthenica 17:33–41

    Google Scholar 

  • Fedosov A, Kantor Y (2008) Toxoglossan gastropods of the subfamily Crassispirinae (Turridae) lacking a radula, and a discussion of the status of the subfamily Zemaciinae. J Mollusc Stud 74:27–35

    Article  Google Scholar 

  • Gayler K, Sandall D, Greening D, Keays D, Polidano M, Livett B, Down J, Satkunanathan N, Khalil Z (2005) Molecular prospecting for drugs from the sea. IEEE Eng Med Biol Mag 24:79–84

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han TS, Teichert RW, Olivera BM, Bulaj G (2008a) Conus venoms—a rich source of peptide-based therapeutics. Curr Pharm Des 14:2462–2479

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Huang F, Jiang H, Liu L, Wang Q, Wang Y, Shao X, Chi C, Du W, Wang C (2008b) Purification and structural characterization of a d-amino acid-containing conopeptide, conomarphin, from Conus marmoreus. FEBS J 275:1976–1987

    Article  PubMed  CAS  Google Scholar 

  • Heralde FM, Imperial J, Bandyopadhyay P, Olivera BM, Concepcion GP, Santos AD (2008) A rapidly diverging superfamily of peptide toxins in venomous Gemmula species. Toxicon 51:890–897

    Article  PubMed  CAS  Google Scholar 

  • Holford M, Puillandre N, Terryn Y, Cruaud C, Olivera BM, Bouchet P (2009) Evolution of the Toxoglossa venom apparatus as inferred by molecular phylogeny of the Terebridae. Mol Biol Evol 26:15–25

    Article  PubMed  CAS  Google Scholar 

  • Hopkins C, Grilley M, Miller C, Shon K-J, Cruz LJ, Gray WR, Dykert J, Rivier J, Yoshikami D, Olivera BM (1995) A new family of Conus peptides targeted to the nicotinic acetylcholine receptor. J Biol Chem 270:22361–22367

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Bandyopadhyay PK, Olivera BM, Yandell M (2011) Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC Genomics 12:60

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Hall B (2001) MrBayes: bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Imperial JS, Watkins M, Chen P, Hillyard DR, Cruz LJ, Olivera BM (2003) The augertoxins: biochemical characterization of venom components from the toxoglossate gastropod Terebra subulata. Toxicon 42:391–398

    Article  PubMed  CAS  Google Scholar 

  • Imperial JS, Kantor Y, Watkins M, Heralde FM, Stevenson B, Chen P, Hansson K, Stenflo J, Ownby J-P, Bouchet P, Olivera BM (2007) Venomous auger snail Hastula (Impages) hectica (Linnaeus 1758): molecular phylogeny, foregut anatomy and comparative toxinology. J Exp Zool 308B:744–756

    Article  CAS  Google Scholar 

  • Jakubowski JA, Kelley WP, Sweedler JV, Gilly WF, Schulz JR (2005) Intraspecific variation of venom injected by fish-hunting Conus snails. J Exp Biol 208:2873–2883

    Article  PubMed  CAS  Google Scholar 

  • Jimenez EC, Olivera BM, Teichert RW (2007) αC-conotoxin PrXA: a new family of nicotinic acetylcholine receptor antagonists. Biochemistry 46:8717–8724

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. CABIOS 8:275–282

    PubMed  CAS  Google Scholar 

  • Kaas Q, Westermann JC, Craik DJ (2010) Conopeptide characterization and classifications: an analysis using ConoServer. Toxicon 55:1491–1509

    Article  PubMed  CAS  Google Scholar 

  • Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:1–17

    Article  Google Scholar 

  • Koua D, Brauer A, Laht S, Kaplinski L, Favreau P, Remm M, Lisacek F, Stöcklin R (2012) ConoDictor: a tool for prediction of conopeptide superfamilies. Nucleic Acids Res (in press)

  • Kraus NJ, Showers Corneli P, Watkins M, Bandyopadhyay PK, Seger J, Olivera BM (2011) Against expectation: a short sequence with high signal elucidates cone snail phylogeny. Mol Phylogenet Evol 58:383–389

    Article  PubMed  CAS  Google Scholar 

  • Laht S, Koua D, Kaplinski L, Lisacek F, Stöcklin R, Remm M (2011) Identification and classification of conopeptides using profile Hidden Markov models. Biochim Biophys Acta 1824:488–492

    PubMed  Google Scholar 

  • Leary D, Vierros M, Hamon G, Arico S, Monagle C (2009) Marine genetic resources: a review of scientific and commercial interest. Mar Policy 33:183–194

    Article  Google Scholar 

  • Lewis RJ (2012) Discovery and development of the χ-conopeptide class of analgesic peptides. Toxicon 59(4):524–528

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Li Q-Z (2007) Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant. Biochem Biophys Res Commun 354:548–551

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Vera E, de la Heimer Cotera EP, Maillo M, Riesgo-Escovar JR, Olivera BM, Aguilar MB (2004) A novel structure class of toxins: the methionine-rich peptides from the venoms of turrid marine snails (Mollusca, Conoidea). Toxicon 43:365–374

    Article  PubMed  CAS  Google Scholar 

  • McGivern JG (2007) Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat 3:69–85

    Article  PubMed  CAS  Google Scholar 

  • Medinskaya AI, Sysoev A (2003) The anatomy of Zemacies excelsa, with a description of a new subfamily of Turridae (Gastropoda, Conoidea). Ruthenica 13:81–87

    Google Scholar 

  • Mena EE, Gullak MF, Pagnozzi MJ, Richter KE, Rivier J, Cruz LJ, Olivera BM (1990) Conantokin-G: a novel peptide antagonist to the N-methyl-d-aspartic acid (NMDA) receptor. Neurosci Lett 118:241–244

    Article  PubMed  CAS  Google Scholar 

  • Menez A, Stocklin R, Mebs D (2006) Venomics’ or: the venomous systems genome project. Toxicon 47:255–259

    Article  PubMed  CAS  Google Scholar 

  • Miljanich GP (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 11:3029–3040

    PubMed  CAS  Google Scholar 

  • Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8:69–85

    Article  PubMed  CAS  Google Scholar 

  • Möller C, Melaun C, Castillo C, Díaz ME, Renzelman CM, Estrada O, Kuch U, Lokey S, Marí F (2010) Functional hypervariability and gene diversity of cardioactive neuropeptides. J Biol Chem 285:40673–40680

    Article  PubMed  Google Scholar 

  • Mondal S, Bhavna R, Babu RM, Ramakumar S (2006) Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classification. J Theor Biol 243:252–260

    Article  PubMed  CAS  Google Scholar 

  • Norton RS, Olivera BM (2006) Conotoxins down under. Toxicon 48:780–798

    Article  PubMed  CAS  Google Scholar 

  • Olivera BM (2002) Conus venom peptides: reflections from the biology of clades and species. Annu Rev Ecol Syst 33:25–47

    Article  Google Scholar 

  • Olivera BM (2006) Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem 281:31173–31177

    Article  PubMed  CAS  Google Scholar 

  • Olivera BM, Walker C, Cartier GE, Hooper D, Santos AD, Schoenfeld R, Shetty R, Watkins M, Bandyopadhyay PK, Hillyard DR (1999) Speciation of cone snails and interspecific hyperdivergence of their venom peptides. Potential evolutionary significance of introns. Ann NY Acad Sci 870:223–237

    Article  PubMed  CAS  Google Scholar 

  • Pi C, Liu J, Peng C, Liu Y, Jiang X, Zhao Y, Tang S, Wang L, Dong M, Chen S, Xu A (2006) Diversity and evolution of conotoxins based on gene expression profiling of Conus litteratus. Genomics 88:809–819

    Article  PubMed  CAS  Google Scholar 

  • Puillandre N, Holford M (2010) The Terebridae and teretoxins: combining phylogeny and anatomy for concerted discovery of bioactive compounds. BMC Chem Biol 10:7

    Article  PubMed  Google Scholar 

  • Puillandre N, Watkins M, Olivera BM (2010) Evolution of Conus peptide genes: duplication and positive selection in the A-superfamily. J Mol Evol 70:190–202

    Article  CAS  Google Scholar 

  • Puillandre N, Kantor Y, Sysoev A, Couloux A, Meyer C, Rawlings T, Todd JA, Bouchet P (2011) The dragon tamed? A molecular phylogeny of the Conoidea (Mollusca, Gastropoda). J Mollusc Stud 77:259–272

    Article  Google Scholar 

  • Quinton L, Gilles N, De Pauw E (2009) TxXIIIA, an atypical homodimeric conotoxin found in the Conus textile venom. J Proteomics 72:219–226

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.4. Available from http://beast.bio.ed.ac.uk/Tracer

  • Rojas A, Feregrino A, Ibarra-Alvarado C, Aguilar MB, Falcon A, de la Heimer Cotera EP (2008) Pharmacological characterization of venoms obtained from Mexican toxoglossate gastropods on isolated guinea pig ileum. J Venom Anim Toxins Incl Trop Dis 14:497–513

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Terrat Y, Biass D, Dutertre S, Favreau P, Remm M, Stöcklin R, Piquemal D, Ducancel F (2011) High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors. Toxicon 59:34–46

    Article  PubMed  Google Scholar 

  • Ueberheide BM, Fenyo D, Alewood PF, Chait BT (2009) Rapid sensitive analysis of cysteine rich peptide venom components. Proc Natl Acad Sci 106:6910–6915

    Article  PubMed  CAS  Google Scholar 

  • Violette A, Leonardi A, Piquemal D, Terrat Y, Biass D, Dutertre S, Noguier F, Ducancel F, Stöcklin R, Križaj I, Favreau P (2012) Recruitment of glycosyl hydrolase proteins in a cone snail venomous arsenal: further insights into biomolecular features of Conus venoms. Mar Drugs 10:258–280

    Article  PubMed  CAS  Google Scholar 

  • Walker CS, Jensen S, Ellison M, Matta JA, Lee WY, Imperial JS, Duclos N, Brockie PJ, Madsen DM, Isaac JT, Olivera BM, Maricq AV (2009) A novel Conus snail polypeptide causes excitotoxicity by blocking desensitization of AMPA receptors. Curr Biol 19:900–908

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Jiang H, Hana Y-H, Yuan DD, Chi C-W (2008) Two different groups of signal sequence in M-superfamily conotoxins. Toxicon 51:813–822

    Article  PubMed  CAS  Google Scholar 

  • Watkins M, Hillyard DR, Olivera BM (2006) Genes expressed in a Turrid venom duct: divergence and similarity to conotoxins. J Mol Evol 62:247–256

    Article  PubMed  CAS  Google Scholar 

  • Zhangsun D, Luo S, Wu Y, Xiaopeng Z, Hu Y, Xie L (2006) Novel O-superfamily conotoxins identified by cDNA cloning from three vermivorous Conus species. Chem Biol Drug Des 68:256–265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the European Commission for financial support. This study has been performed as a part of the CONCO cone snail genome project for health (www.conco.eu) within the 6th Framework Program (LIFESCIHEALTH-6 Integrated Project LSHB-CT-2007, contract number 037592). We are also grateful to Frédérique Lisacek from the Swiss Institute of Bioinformatics for ongoing help. We would like to thank Dr Ron Hogg of OmniScience SA for editorial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Puillandre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

239_2012_9507_MOESM1_ESM.xls

Appendix 1: List of analysed sequences with superfamily assignation, GenBank numbers, Cys-pattern, species from which the sequence originated and corresponding feeding type F: Fish-hunting species; M: Mollusc-hunting species; W: Worm-hunting species). (XLS 200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puillandre, N., Koua, D., Favreau, P. et al. Molecular Phylogeny, Classification and Evolution of Conopeptides. J Mol Evol 74, 297–309 (2012). https://doi.org/10.1007/s00239-012-9507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-012-9507-2

Keywords

Navigation