Skip to main content
Log in

Recombination Detection Under Evolutionary Scenarios Relevant to Functional Divergence

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Recombination can negatively impact methods designed to detect divergent gene function that rely on explicit knowledge of a gene tree. However, we know little about how recombination detection methods perform under evolutionary scenarios encountered in studies of functional molecular divergence. We use simulation to evaluate false positive rates for six recombination detection methods (GENECONV, MaxChi, Chimera, RDP, GARD-SBP, GARD-MBP) under evolutionary scenarios that might increase false positives. Broadly, these scenarios address: (i) asymmetric tree topology and sequence divergence, (ii) non-stationary codon bias and selection pressure, and (iii) positive selection. We also evaluate power to detect recombination under truly recombinant history. As with previous studies, we find that power increases with sequence divergence. However, we also find that accuracy to correctly infer the number of breakpoints is extremely low. When recombination is absent, increased sequence divergence leads to increased false positives. Furthermore, one method (GARD-SBP) is sensitive to tree shape, with higher false positive rates under an asymmetric tree topology. Somewhat surprisingly, all methods are robust to the simulated heterogeneity in codon bias, shifts in selection pressure and presence of positive selection. Based on these findings, we recommend that studies of functional divergence in systems where recombination is plausible can, and should, include a pre-test for recombination. Application of all methods to the core genome of Prochlorococcus reveals a substantial lack of concordance among results. Based on analysis of both real and simulated datasets we present some guidelines for the investigation of recombination in genes that may have experienced functional divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236

    PubMed  CAS  Google Scholar 

  • Aris-Brosou S, Bielawski JP (2006) Large-scale analyses of synonymous substitution rates can be sensitive to assumptions about the process of mutation. Gene 378:58–64

    Article  PubMed  CAS  Google Scholar 

  • Bielawski JP, Yang Z (2005) Maximum likelihood methods for detecting adaptive protein evolution. In: Nielsen R (ed) Statistical methods in molecular evolution. Springer-Verlag, New York

    Google Scholar 

  • Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL, Case RJ, Doolittle WF (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37:283–328

    Article  PubMed  CAS  Google Scholar 

  • Chan CX, Beiko RG, Ragan MA (2006) Detecting recombination in evolving nucleotide sequences. BMC Bioinform 7:412

    Article  Google Scholar 

  • Duffy S, Holmes EC (2008) Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus Tomato yellow leaf curl virus. J Virol 82:957–965

    Article  PubMed  CAS  Google Scholar 

  • Fletcher W, Yang Z (2009) INDELible: a flexible simulator of biological sequence evolution. Mol Biol Evol 26:1879–1888

    Article  PubMed  CAS  Google Scholar 

  • Gaucher EA, Gu X, Miyamoto MM, Benner SA (2002) Predicting functional divergence in protein evolution by site-specific rate shifts. Trends Biochem Sci 27:315–321

    Article  PubMed  CAS  Google Scholar 

  • Gu X (1999) Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 16:1664–1674

    PubMed  CAS  Google Scholar 

  • Husmeier D, McGuire G (2003) Detecting recombination in 4-taxa DNA sequence alignments with Bayesian hidden Markov models and Markov chain Monte Carlo. Mol Biol Evol 20:315–337

    Article  PubMed  CAS  Google Scholar 

  • Kettler GC, Martiny AC, Huang K, Zucker J, Coleman ML, Rodrigue S, Chen F, Lapidus A, Ferriera S, Johnson J et al (2007) Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet 3:2515–2528

    Article  CAS  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  PubMed  CAS  Google Scholar 

  • Knudsen B, Miyamoto MM (2001) A likelihood ratio test for evolutionary rate shifts and functional divergence among proteins. Proc Natl Acad Sci USA 98:14512–14517

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes. Annu Rev Microbiol 55:709–742

    Article  PubMed  CAS  Google Scholar 

  • Kosakovsky Pond SL, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. In: Nielsen R (ed) Statistical methods in molecular evolution. Springer, New York

    Google Scholar 

  • Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901

    Article  PubMed  Google Scholar 

  • Liu H, Nolla HA, Campbell L (1997) Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol 12:39–47

    Article  Google Scholar 

  • Mann NH, Cook A, Millard A, Bailey S, Clokie M (2003) Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424:741–742

    Article  PubMed  CAS  Google Scholar 

  • Martin DP (2009) Recombination detection and analysis using RDP3. Methods Mol Biol 537:185–205

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126–129

    Google Scholar 

  • Narra HP, Ochman H (2006) Of what use is sex to bacteria? Curr Biol 16:R705–R710

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Pagán I, Firth C, Holmes EC (2010) Phylogenetic analysis reveals rapid evolutionary dynamics in the plant RNA virus genus Tobamovirus. J Mol Evol 71:298–307

    Article  PubMed  Google Scholar 

  • Posada D (2002) Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol 19:708–717

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 98:13757–13762

    Article  PubMed  CAS  Google Scholar 

  • Ragan MA (2001) Detection of lateral gene transfer among microbial genomes. Curr Opin Genet Dev 11:620–626

    Article  PubMed  CAS  Google Scholar 

  • Sawyer S (1989) Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538

    PubMed  CAS  Google Scholar 

  • Scheffler K, Martin DP, Seoighe C (2006) Robust inference of positive selection from recombining coding sequences. Bioinformatics 22:2493–2499

    Article  PubMed  CAS  Google Scholar 

  • Shriner D, Nickle DC, Jensen MA, Mullins JI (2003) Potential impact of recombination on sitewise approaches for detecting positive natural selection. Genet Res 81:115–121

    Article  PubMed  CAS  Google Scholar 

  • Suchard MA, Weiss RE, Dorman KS, Sinsheimer JS (2002) Oh brother, where art thou? A Bayes factor test for recombination with uncertain heritage. Syst Biol 51:715–728

    Article  PubMed  Google Scholar 

  • Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW (2006) Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4:1344–1357

    Article  CAS  Google Scholar 

  • Susko E, Inagaki Y, Field C, Holder ME, Roger AJ (2002) Testing for differences in rates-across-sites distributions in phylogenetic subtrees. Mol Biol Evol 19:1514–1523

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Handa N, Kiyosawa H, Ishizaka J (1995) Distribution of the prochlorophyte Prochlorococcus in the Central Pacific Ocean as measured by HPLC. Limnol Oceanogr 40:983–989

    Article  Google Scholar 

  • Ting CS, Rocap G, King J, Chisholm SW (2001) Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: Evidence for rapid evolution of genetic heterogeneity. Microbiology 147:3171–3182

    PubMed  CAS  Google Scholar 

  • Wiuf C, Christensen T, Hein J (2001) A simulation study of the reliability of recombination detection methods. Mol Biol Evol 18:1929–1939

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Zeidner G, Bielawski JP, Shmoish M, Scanlan DJ, Sabehi G, Béjà O (2005) Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ Microbiol 7:1505–1513

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Rosenburg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. PNAS 95:3708–3713

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Qin S (2007) Comparative molecular population genetics of phycoerythrin locus in Prochlorococcus. Genetica 129:291–299

    Article  PubMed  CAS  Google Scholar 

  • Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Zhaxybayeva O, Doolittle WF, Papke RT, Gogarten JP (2009) Intertwined evolutionary histories of marine Synechococcus and Prochlorococcus marinus. Genome Biol Evol 2009:325–339

    Google Scholar 

Download references

Acknowledgments

This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant awarded to JPB. The research utilized computer hardware funded by a grant from the Canadian Foundation for Innovation to JPB. JBP also acknowledges the support of the Centre for Genomics and Evolutionary Bioinformatics (CGEB) which is funded by the Tula Foundation. We thank Olga Zhaxybayeva for providing amino acid alignments for the Prochlorococcus genomic data. We thank Joseph Mingrone for assistance with running the GARD analyses. We thank Katherine A. Dunn for helpful discussions, and for valuable guidance and advice on the development of Perl programs and the automation of analyses of both simulated data and real genome-scale datasets. We thank two anonymous referees for their comments, and for several suggestions that substantially improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachael A. Bay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 553 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bay, R.A., Bielawski, J.P. Recombination Detection Under Evolutionary Scenarios Relevant to Functional Divergence. J Mol Evol 73, 273–286 (2011). https://doi.org/10.1007/s00239-011-9473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-011-9473-0

Keywords

Navigation