Skip to main content
Log in

Selection-Driven Divergence After Gene Duplication in Arabidopsis thaliana

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Gene duplications are one of the most important mechanisms for the origin of evolutionary novelties. Even though various models of the fate of duplicated genes have been established, current knowledge about the role of divergent selection after gene duplication is rather limited. In this study, we analyzed sequence divergence in response to neo- and subfunctionalization of segmentally duplicated genes in the genome of Arabidopsis thaliana. We compared the genomes of A. thaliana and the poplar Populus trichocarpa to identify orthologous pairs of genes and their corresponding inparalogs. Maximum-likelihood analyses of the nonsynonymous and synonymous substitution rate ratio \( \left( {\omega = d_{\rm{N}} /d_{\rm{S}} } \right) \) of pairs of A. thaliana inparalogs were used to detect differences in the evolutionary rates of protein coding sequences. We analyzed 1,924 A. thaliana paralogous pairs and our results indicate that around 6.9% show divergent ω values between the lineages for a fraction of sites. We observe an enrichment of regulatory sequences, a reduced level of co-expression and an increased number of substitutions that can be attributed to positive selection based on an McDonald–Kreitman type of analysis. Taken together, these results show that selection after duplication contributes substantially to gene novelties and hence functional divergence in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AG Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1006/jmbi.1990.9999

    Google Scholar 

  • Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18(8):1585–1592

    PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. doi:10.1038/75556

    Google Scholar 

  • Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Ségurens B, Daubin V, Anthouard V, Aiach N, Arnaiz O, Billaut A, Beisson J, Blanc I, Bouhouche K, Câmara F, Duharcourt S, Guigo R, Gogendeau D, Katinka M, Keller AM, Kissmehl R, Klotz C, Koll F, Mouël AL, Lepère G, Malinsky S, Nowacki M, Nowak JK, Plattner H, Poulain J, Ruiz F, Serrano V, Zagulski M, Dessen P, Bétermier M, Weissenbach J, Scarpelli C, Schächter V, Sperling L, Meyer E, Cohen J, Wincker P (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444(7116):171–178. doi:10.1038/nature05230

    Google Scholar 

  • Benderoth M, Textor S, Windsor AJ, Mitchell-Olds T, Gershenzon J, Kroymann J (2006) Positive selection driving diversification in plant secondary metabolism. Proc Natl Acad Sci USA 103(24):9118–9123. doi:10.1073/pnas.0601738103

    Google Scholar 

  • Bernhardt A, Mooney S, Hellmann H (2010) Arabidopsis DDB1a and DDB1b are critical for embryo development. Planta 232(3):555–566. doi:10.1007/s00425-010-1195-9

    Google Scholar 

  • Bielawski JP, Yang Z (2004) A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J Mol Evol 59(1):121–132. doi:10.1007/s00239-004-2597-8

    Google Scholar 

  • Blanc G, Wolfe KH (2004a) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16(7):1679–1691. doi:10.1105/tpc.021410

    Google Scholar 

  • Blanc G, Wolfe KH (2004b) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16(7):1667–1678. doi:10.1105/tpc.021345

    Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13(2):137–144. doi:10.1101/gr.751803

    Google Scholar 

  • Cartwright RA (2009) Problems and solutions for estimating indel rates and length distributions. Mol Biol Evol 26(2):473–480. doi:10.1093/molbev/msn275

    Google Scholar 

  • Chain FJJ, Evans BJ (2006) Multiple mechanisms promote the retained expression of gene duplicates in the tetraploid frog Xenopus laevis. PLoS Genet 2(4):e56. doi:10.1371/journal.pgen.0020056

  • Chen F, Mackey AJ, Vermunt JK, Roos DS (2007a) Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS ONE 2(4):e383. doi:10.1371/journal.pone.0000383

  • Chen Q, Steinhauer L, Hammerlindl J, Keller W, Zou J (2007b) Biosynthesis of phytosterol esters: identification of a sterol o-acyltransferase in Arabidopsis. Plant Physiol 145(3):974–984. doi:10.1104/pp.107.106278

    Google Scholar 

  • Clark AG (1994) Invasion and maintenance of a gene duplication. Proc Natl Acad Sci USA 91(8):2950–2954

    Article  PubMed  CAS  Google Scholar 

  • Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, Chen H, Frazer KA, Huson DH, Schölkopf B, Nordborg M, Rätsch G, Ecker JR, Weigel D (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317(5836):338–342. doi:10.1126/science.1138632

    Google Scholar 

  • Conant GC, Wagner A (2003) Asymmetric sequence divergence of duplicate genes. Genome Res 13(9):2052–2058. doi:10.1101/gr.1252603

    Google Scholar 

  • Duarte JM, Cui L, Wall PK, Zhang Q, Zhang X, Leebens-Mack J, Ma H, Altman N, dePamphilis CW (2006) Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol Biol Evol 23(2):469–478. doi:10.1093/molbev/msj051

    Google Scholar 

  • Ellegren H (2008) Sequencing goes 454 and takes large-scale genomics into the wild. Mol Ecol 17(7):1629–1631. doi:10.1111/j.1365-294X.2008.03699.x

    Google Scholar 

  • Eyre-Walker A (2006) The genomic rate of adaptive evolution. Trends Ecol Evol 21(10):569–575. doi:10.1016/j.tree.2006.06.015

    Google Scholar 

  • Eyre-Walker A, Keightley PD (2009) Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol Biol Evol 26(9):2097–2108. doi:10.1093/molbev/msp119

    Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Fiebig A, Kimport R, Preuss D (2004) Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification. Proc Natl Acad Sci USA 101(9):3286–3291. doi:10.1073/pnas.0305448101

    Google Scholar 

  • Fletcher W, Yang Z (2009) INDELible: a flexible simulator of biological sequence evolution. Mol Biol Evol 26(8):1879–1888. doi:10.1093/molbev/msp098

    Google Scholar 

  • Fletcher W, Yang Z (2010) The Effect of insertions, deletions and alignment errors on the branch-site test of positive selection. Mol Biol Evol. doi:10.1093/molbev/msq115

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545

    PubMed  CAS  Google Scholar 

  • Forsberg R, Christiansen FB (2003) A codon-based model of host-specific selection in parasites, with an application to the influenza A virus. Mol Biol Evol 20(8):1252–1259. doi:10.1093/molbev/msg149

    Google Scholar 

  • Foxe JP, un Nisa Dar V, Zheng H, Nordborg M, Gaut BS, Wright SI (2008) Selection on amino acid substitutions in Arabidopsis. Mol Biol Evol 25(7):1375–1383. doi:10.1093/molbev/msn079

    Google Scholar 

  • Gossmann TI, Song BH, Windsor AJ, Mitchell-Olds T, Dixon CJ, Kapralov MV, Filatov DA, Eyre-Walker A (2010) Genome wide analyses reveal little evidence for adaptive evolution in many plant species. Mol Biol Evol. doi:10.1093/molbev/msq079

  • Hahn MW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100(5):605–617. doi:10.1093/jhered/esp047

    Google Scholar 

  • Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW (2009) Adaptive evolution of young gene duplicates in mammals. Genome Res 19(5):859–867. doi:10.1101/gr.085951.108

    Google Scholar 

  • He X, Zhang J (2005) Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169(2):1157–1164. doi:10.1534/genetics.104.037051

    Google Scholar 

  • Higgins DG (1994) CLUSTAL V: multiple alignment of DNA and protein sequences. Methods Mol Biol 25:307–318. doi:10.1385/0-89603-276-0:307

    Google Scholar 

  • IRGS Project (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800

    Article  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Fabbro CD, Alaux M, Gaspero GD, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Clainche IL, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, for Grapevine Genome Characterization FIPC (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, bZ IP Research Group (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111

    Article  PubMed  CAS  Google Scholar 

  • Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144(1):336–346. doi:10.1104/pp.106.095299

    Google Scholar 

  • Kim CY, Bove J, Assmann SM (2008) Overexpression of wound-responsive RNA-binding proteins induces leaf senescence and hypersensitive-like cell death. New Phytol 180(1):57–70. doi:10.1111/j.1469-8137.2008.02557.x

    Google Scholar 

  • Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338. doi:10.1146/annurev.genet.39.073003.114725

    Google Scholar 

  • Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16(11):2870–2894. doi:10.1105/tpc.104.025502

    Google Scholar 

  • Kuraku S, Meyer A, Kuratani S (2009) Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol 26(1):47–59. doi:10.1093/molbev/msn222

    Google Scholar 

  • Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178–2189. doi:10.1101/gr.1224503

    Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154(1):459–473

    PubMed  CAS  Google Scholar 

  • Lynch M, O’Hely M, Walsh B, Force A (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159(4):1789–1804

    PubMed  CAS  Google Scholar 

  • Mao Y, Pavangadkar KA, Thomashow MF, Triezenberg SJ (2006) Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1. Biochim Biophys Acta 1759(1–2):69–79. doi:10.1016/j.bbaexp.2006.02.006

    Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351(6328):652–654. doi:10.1038/351652a0

    Google Scholar 

  • Mita SD, Santoni S, Hochu I, Ronfort J, Bataillon T (2006) Molecular evolution and positive selection of the symbiotic gene NORK in Medicago truncatula. J Mol Evol 62(2):234–244. doi:10.1007/s00239-004-0367-2

    Google Scholar 

  • Mondragón-Palomino M, Meyers BC, Michelmore RW, Gaut BS (2002) Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res 12(9):1305–1315. doi:10.1101/gr.159402

    Google Scholar 

  • Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg NA, Shah C, Wall JD, Wang J, Zhao K, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3(7):e196, doi:10.1371/journal.pbio.0030196

  • O’Hely M (2006) A diffusion approach to approximating preservation probabilities for gene duplicates. J Math Biol 53(2):215–230. doi:10.1007/s00285-006-0001-6

    Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  • Raes J, Vandepoele K, Simillion C, Saeys Y, de Peer YV (2003) Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 3(1–4):117–129

    Article  PubMed  CAS  Google Scholar 

  • Rastogi S, Liberles DA (2005) Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol Biol 5(1):28. doi:10.1186/1471-2148-5-28

  • Remm M, Storm CE, Sonnhammer EL (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 314(5):1041–1052. doi:10.1006/jmbi.2000.5197

    Google Scholar 

  • Rizzon C, Ponger L, Gaut BS (2006) Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol 2(9):e115. doi:10.1371/journal.pcbi.0020115

  • Scannell DR, Butler G, Wolfe KH (2007) Yeast genome evolution–the origin of the species. Yeast 24(11):929–942. doi:10.1002/yea.1515

    Google Scholar 

  • Schein M, Yang Z, Mitchell-Olds T, Schmid KJ (2004) Rapid evolution of a pollen-specific oleosin-like gene family from Arabidopsis thaliana and closely related species. Mol Biol Evol 21(4):659–669. doi:10.1093/molbev/msh059

    Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588. doi:10.1146/annurev.arplant.043008.092039

    Google Scholar 

  • Spillane C, Schmid KJ, Laoueillé-Duprat S, Pien S, Escobar-Restrepo JM, Baroux C, Gagliardini V, Page DR, Wolfe KH, Grossniklaus U (2007) Positive darwinian selection at the imprinted MEDEA locus in plants. Nature 448(7151):349–352. doi:10.1038/nature05984

    Google Scholar 

  • Studer RA, Penel S, Duret L, Robinson-Rechavi M (2008) Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes. Genome Res 18(9):1393–1402. doi:10.1101/gr.076992.108

    Google Scholar 

  • Sun X, Cao Y, Wang S (2006) Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. Plant Physiol 140(3):998–1008. doi:10.1104/pp.105.073080

    Google Scholar 

  • Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48(8):1148–1158. doi:10.1093/pcp/pcm088

    Google Scholar 

  • Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34(Web Server issue):W609–W612. doi:10.1093/nar/gkl315

  • Tanaka KM, Takahasi KR, Takano-Shimizu T (2009) Enhanced fixation and preservation of a newly arisen duplicate gene by masking deleterious loss-of-function mutations. Genet Res (Camb) 91(4):267–280. doi:10.1017/S0016672309000196

    Google Scholar 

  • Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18(12):1944–1954. doi:10.1101/gr.080978.108

    Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, de Peer YV, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604. doi:10.1126/science.1128691

    Google Scholar 

  • Wong KM, Suchard MA, Huelsenbeck JP (2008) Alignment uncertainty and genomic analysis. Science 319(5862):473–476. doi:10.1126/science.1151532

    Google Scholar 

  • Xue C, Fu Y (2009) Preservation of duplicate genes by originalization. Genetica 136(1):69–78. doi:10.1007/s10709-008-9311-5

    Google Scholar 

  • Yamane K, Yano K, Kawahara T (2006) Pattern and rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane, maize and rice. DNA Res 13(5):197–204. doi:10.1093/dnares/dsl012

    Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15(12):496–503

    Article  PubMed  Google Scholar 

  • Zhang Z, Gerstein M (2003) Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Res 31(18):5338–5348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the bioinformatics group of the IPK Gatersleben as well as Christian Kauhaus at University of Jena for access to the computer clusters. Matthias Höffken provided useful hints on Python scripting and contributed Python code for statistical analyses. The authors thank Adam Eyre-Walker for discussion on the MK analysis of inparalogs. The authors also thank D. Tian and two anonymous referees for their valuable comments on the manuscript. The study was supported by an undergraduate scholarship by the Studienstiftung des deutschen Volkes to TG and IPK core funding to KS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni I. Gossmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 64 kb)

Supplementary material 2 (XLS 619 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gossmann, T.I., Schmid, K.J. Selection-Driven Divergence After Gene Duplication in Arabidopsis thaliana . J Mol Evol 73, 153–165 (2011). https://doi.org/10.1007/s00239-011-9463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-011-9463-2

Keywords

Navigation