We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Positive Darwinian Selection Drives the Evolution of the Morphology-Related Gene, EPCAM, in Particularly Species-Rich Lineages of African Cichlid Fishes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The study of genetic evolution within the context of adaptive radiations offers insights to genes and selection pressures that result in rapid morphological change. Cichlid fishes are very species-rich and variable in coloration, behavior, and morphology, and so provide a classical model system for studying the genetics of adaptive radiation. In this study, we researched the evolution of the epithelial cell adhesion molecule (EPCAM), a candidate gene for the adaptive evolution of morphology broadly, and skin development specifically, in fishes. We compared EPCAM gene sequences from a rapidly speciating African cichlid lineage (the haplochromines), a species-poor African lineage (Nile tilapia Oreochromis niloticus), and a very young adaptive radiation in the Neotropics (sympatric crater lake Midas cichlids, Amphilophus sp.). Our results, based on a hierarchy of evolutionary analyses of nucleotide substitution, demonstrate that there are different selection pressures on the EPCAM gene among the cichlid lineages. Several waves of positive natural selection were identified not only on the terminal branches, but also on ancestral branches. Interestingly, significant positive or directional selection was found in the haplochromine cichlids only but not the comparatively species-poor tilapia lineage. We hypothesize that the strong signal of selection in the ancestral African cichlid lineage coincided with the transition from riverine to lacustrine habitat. The two neotropical species for which we collected new sequence data were invariant in the EPCAM locus. Our results suggest that functional changes promoted by positive Darwinian selection are widespread in the EPCAM gene during African cichlid evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abila R, Barluenga M, Engelken J, Meyer A, Salzburger W (2004) Population-structure and genetic diversity in a haplochromine fish cichlid of a satellite lake of Lake Victoria. Mol Ecol 13:2589–2602

    Article  PubMed  CAS  Google Scholar 

  • Albertson RC, Kocher TD (2006) Genetic and developmental basis of cichlid trophic diversity. Heredity 97:211–221

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592

    PubMed  CAS  Google Scholar 

  • Baeuerle PA, Gires O (2007) EpCAM (CD326) finding its role in cancer. Br J Cancer 96:417–423

    Article  PubMed  CAS  Google Scholar 

  • Barrier M, Robichaux RH, Purugganan MD (2001) Accelerated regulatory gene evolution in an adaptive radiation. Proc Natl Acad Sci USA 98:10208–10213

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Boguski MS, Lowe TMJ, Tolstoshev CM (1993) Dbest - database for expressed sequence tags. Nat Genet 4:332–333

    Google Scholar 

  • Dann SG, Allison WT, Levin DB, Taylor JS, Hawryshyn CW (2004) Salmonid opsin sequences undergo positive selection and indicate an alternate evolutionary relationship in Oncorhynchus. J Mol Evol 58:400–412

    Google Scholar 

  • Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D, Jackson JBC, Lenski RE, Lieberman BS, McPeek MA, Miller W (2005) The dynamics of evolutionary stasis. Paleobiology 31:133–145

    Article  Google Scholar 

  • Elmer KR, Reggio C, Wirth T, Verheyen E, Salzburger W, Meyer A (2009) Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes. Proc Natl Acad Sci USA 106:13404–13409

    Article  PubMed  CAS  Google Scholar 

  • Elmer KR, Fan S, Gunter HM, Jones JC, Boekhoff S, Kuraku S, Meyer A (2010a) Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes. Mol Ecol 19:197–211

    Article  PubMed  CAS  Google Scholar 

  • Elmer KR, Kusche H, Lehtonen TK, Meyer A (2010b) Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philos Trans R Soc Lond B Biol Sci 365:1763–1782

    Article  PubMed  Google Scholar 

  • Farias IP, Orti G, Sampaio I, Schneider H, Meyer A (1999) Mitochondrial DNA phylogeny of the family Cichlidae: monophyly and fast molecular evolution of the neotropical assemblage. J Mol Evol 48:703–711

    Article  PubMed  CAS  Google Scholar 

  • Forrester JV, Xu HP, Kuffova L, Dick AD, McMenamin PG (2010) Dendritic cell physiology and function in the eye. Immunol Rev 234:282–304

    Article  PubMed  CAS  Google Scholar 

  • Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737

    Article  PubMed  CAS  Google Scholar 

  • Genner MJ, Seehausen O, Lunt DH, Joyce DA, Shaw PW, Carvalho GR, Turner GF (2007) Age of cichlids: new dates for ancient lake fish radiations. Mol Biol Evol 24:1269–1282

    Article  PubMed  CAS  Google Scholar 

  • Gerrard DT, Meyer A (2007) Positive selection and gene conversion in SPP120, a fertilization-related gene, during the East African cichlid fish radiation. Mol Biol Evol 24:2286–2297

    Article  PubMed  CAS  Google Scholar 

  • Golding GB, Dean AM (1998) The structural basis of molecular adaptation. Mol Biol Evol 15:355–369

    PubMed  CAS  Google Scholar 

  • Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537:113–137

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313:101–104

    Article  PubMed  CAS  Google Scholar 

  • Hofmann CM, O’Quin KE, Marshall NJ, Cronin TW, Seehausen O, Carleton KL (2009) The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biol 7:e1000266

    Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M (2002) The Ensembl genome database project. Nucleic Acids Res 30:38–41

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (2007) Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 99:364–373

    Article  PubMed  CAS  Google Scholar 

  • Hulsey CD, Roberts RJ, Lin AS, Guldberg R, Streelman JT (2008) Convergence in a mechanically complex phenotype: detecting structural adaptations for crushing in cichlid fish. Evolution 62:1587–1599

    Article  PubMed  Google Scholar 

  • Jeukens J, Bittner D, Knudsen R, Bernatchez L (2009) Candidate genes and adaptive radiation: insights from transcriptional adaptation to the limnetic niche among coregonine fishes (Coregonus spp., Salmonidae). Mol Biol Evol 26:155–166

    Article  PubMed  CAS  Google Scholar 

  • Kapralov MV, Filatov DA (2006) Molecular adaptation during adaptive radiation in the Hawaiian endemic genus Schiedea. PLoS One 1:e8

    Article  PubMed  Google Scholar 

  • Kijimoto T, Watanabe M, Fujimura K, Nakazawa M, Murakami Y, Kuratani S, Kohara Y, Gojobori T, Okada N (2005) cimp1, a novel astacin family metalloproteinase gene from East African cichlids, is differentially expressed between species during growth. Mol Biol Evol 22:1649–1660

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Watanabe M, Horiike T, Kohara Y, Okada N (2009) Extensive analysis of EST sequences reveals that all cichlid species in Lake Victoria share almost identical transcript sets. Gene 441:187–191

    Article  PubMed  CAS  Google Scholar 

  • Koblmuller S, Salzburger W, Sturmbauer C (2004) Evolutionary relationships in the sand-dwelling cichlid lineage of Lake Tanganyika suggest multiple colonization of rocky habitats and convergent origin of biparental mouthbrooding. J Mol Evol 58:79–96

    Article  PubMed  Google Scholar 

  • Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, Conroy JA, McKaye KR, Stauffer JR (1993) Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol Phylogenet Evol 2:158–165

    Article  PubMed  CAS  Google Scholar 

  • Kuraku S, Meyer A (2008) Genomic analysis of cichlid fish ‘natural mutants’. Curr Opin Genet Dev 18:551–558

    Article  PubMed  CAS  Google Scholar 

  • Lee BY, Howe AE, Conte MA, D’Cotta H, Pepey E, Baroiller JF, di Palma F, Carleton KL, Kocher TD (2010) An EST resource for tilapia based on 17 normalized libraries and assembly of 116,899 sequence tags. BMC Genomics 11:278

    Article  PubMed  Google Scholar 

  • Messier W, Stewart CB (1997) Episodic adaptive evolution of primate lysozymes. Nature 385:151

    Article  PubMed  CAS  Google Scholar 

  • Meyer A (1993) Phylogenetic-relationships and evolutionary processes in East-African cichlid fishes. Trends Ecol Evol 8:279–284

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Biermann CH, Orti G (1993) The phylogenetic position of the zebrafish (Danio-Rerio), a model system in developmental biology—an invitation to the comparative method. Proc R Soc Lond B Biol Sci 252:231–236

    Article  CAS  Google Scholar 

  • Ohta T (1995) Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J Mol Evol 40:56–63

    Article  PubMed  CAS  Google Scholar 

  • Peterson GI, Masel J (2009) Quantitative prediction of molecular clock and Ka/Ks at short timescales. Mol Biol Evol 26:2595–2603

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  PubMed  CAS  Google Scholar 

  • Rogers SM, Bernatchez L (2007) The genetic architecture of ecological speciation and the association with signatures of selection in natural lake whitefish (Coregonas sp. Salmonidae) species pairs. Mol Biol Evol 24:1423–1438

    Article  PubMed  CAS  Google Scholar 

  • Ruber L, Verheyen E, Meyer A (1999) Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proc Natl Acad Sci USA 96:10230–10235

    Article  PubMed  CAS  Google Scholar 

  • Salzburger W, Meyer A (2004) The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91:277–290

    Article  PubMed  CAS  Google Scholar 

  • Salzburger W, Meyer A, Baric S, Verheyen E, Sturmbauer C (2002) Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the Central and East African haplochromine cichlid fish faunas. Syst Biol 51:113–135

    Article  PubMed  Google Scholar 

  • Salzburger W, Mack T, Verheyen E, Meyer A (2005) Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol Biol 5:17

    Article  PubMed  Google Scholar 

  • Salzburger W, Braasch I, Meyer A (2007) Adaptive sequence evolution in a color gene involved in the formation of the characteristic egg-dummies of male haplochromine cichlid fishes. BMC Biol 5:51

    Article  PubMed  Google Scholar 

  • Salzburger W, Renn SC, Steinke D, Braasch I, Hofmann HA, Meyer A (2008) Annotation of expressed sequence tags for the East African cichlid fish Astatotilapia burtoni and evolutionary analyses of cichlid ORFs. BMC Genomics 9:96

    Article  PubMed  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380

    Article  PubMed  Google Scholar 

  • Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741

    Article  PubMed  CAS  Google Scholar 

  • Seehausen O (2006) African cichlid fish: a model system in adaptive radiation research. Proc R Soc Lond B Biol Sci 273:1987–1998

    Article  Google Scholar 

  • Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HD, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626

    Article  PubMed  CAS  Google Scholar 

  • Slanchev K, Carney TJ, Stemmler MP, Koschorz B, Amsterdam A, Schwarz H, Hammerschmidt M (2009) The epithelial cell adhesion molecule EPCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLoS Genet 5:e1000563

    Article  PubMed  Google Scholar 

  • Spady TC, Seehausen O, Loew ER, Jordan RC, Kocher TD, Carleton KL (2005) Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Mol Biol Evol 22:1412–1422

    Article  PubMed  CAS  Google Scholar 

  • Steinke D, Salzburger W, Meyer A (2006) Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs. J Mol Evol 62:772–784

    Article  PubMed  CAS  Google Scholar 

  • Sturmbauer C, Meyer A (1992) Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 358:578–581

    Article  PubMed  CAS  Google Scholar 

  • Sugawara T, Terai Y, Okada N (2002) Natural selection of the rhodopsin gene during the adaptive radiation of East African Great Lakes Cichlid fishes. Mol Biol Evol 19:1807–1811

    PubMed  CAS  Google Scholar 

  • Sugie A, Terai Y, Ota R, Okada N (2004) The evolution of genes for pigmentation in African cichlid fishes. Gene 343:337–346

    Google Scholar 

  • Summers K, Zhu Y (2008) Positive selection on a prolactin paralog following gene duplication in cichlids: adaptive evolution in the context of parental care? Copeia 4:872–876

    Google Scholar 

  • Terai Y, Morikawa N, Kawakami K, Okada N (2002a) Accelerated evolution of the surface amino acids in the WD-repeat domain encoded by the hagoromo gene in an explosively speciated lineage of East African cichlid fishes. Mol Biol Evol 19:574–578

    PubMed  CAS  Google Scholar 

  • Terai Y, Morikawa N, Kawakami K, Okada N (2003) The complexity of alternative splicing of hagoromo mRNAs is increased in an explosively speciated lineage in East African cichlids. Proc Natl Acad Sci USA 100:12798–12803

    Google Scholar 

  • Terai Y, Morikawa N, Okada N (2002b) The evolution of the pro-domain of bone morphogenetic protein 4 (Bmp4) in an explosively speciated lineage of East African cichlid fishes. Mol Biol Evol 19:1628–1632

    PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2:Unit 2.3

  • Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC (2007) Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol 171:386–395

    Article  PubMed  CAS  Google Scholar 

  • Trzpis M, Bremer E, McLaughlin PM, de Leij LF, Harmsen MC (2008a) EpCAM in morphogenesis. Front Biosci 13:5050–5055

    Article  PubMed  CAS  Google Scholar 

  • Trzpis M, McLaughlin PM, Popa ER, Terpstra P, Van Kooten TG, De Leij LM, Harmsen MC (2008b) EpCAM homologues exhibit epithelial-specific but different expression patterns in the kidney. Transgenic Res 17:229–238

    Article  PubMed  CAS  Google Scholar 

  • Verheyen E, Salzburger W, Snoeks J, Meyer A (2003) Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300:325–329

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Kobayashi N, Shin-i T, Horiike T, Tateno Y, Kohara Y, Okada N (2004) Extensive analysis of ORF sequences from two different cichlid species in Lake Victoria provides molecular evidence for a recent radiation event of the Victoria species flock: identity of EST sequences between Haplochromis chilotes and Haplochromis sp. “Redtailsheller”. Gene 343:263–269

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917

    PubMed  CAS  Google Scholar 

  • Yang ZH, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Zardoya R, Vollmer DM, Craddock C, Streelman JT, Karl S, Meyer A (1996) Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). Proc Biol Sci 263:1589–1598

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the participants of the Konstanz Ecology and Evolution discussion group, S. Kuraku, and two anonymous reviewers for comments that improved the manuscript. This work was financially supported by a doctoral stipend from University of Konstanz to S.Fan, an NSERC fellowship and a University of Konstanz Young Scholar’s Award to K.R. Elmer and the Deutsche Forschungsgemeinschaft and the University of Konstanz to A. Meyer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Meyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, S., Elmer, K.R. & Meyer, A. Positive Darwinian Selection Drives the Evolution of the Morphology-Related Gene, EPCAM, in Particularly Species-Rich Lineages of African Cichlid Fishes. J Mol Evol 73, 1–9 (2011). https://doi.org/10.1007/s00239-011-9452-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-011-9452-5

Keywords

Navigation