Skip to main content
Log in

Genes Devoid of Full-Length Transposable Element Insertions are Involved in Development and in the Regulation of Transcription in Human and Closely Related Species

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) are major components of mammalian genomes, and their impact on genome evolution is now well established. In recent years several findings have shown that they are associated with the expression level and function of genes. In this study, we analyze the relationships between human genes and full-length TE copies in terms of three factors (gene function, expression level, and selective pressure). We classified human genes according to their TE density, and found that TE-free genes are involved in important functions such as development, transcription, and the regulation of transcription, whereas TE-rich genes are involved in functions such as transport and metabolism. This trend is conserved through evolution. We show that this could be explained by a stronger selection pressure acting on both the coding and non-coding regions of TE-free genes than on those of TE-rich genes. The higher level of expression found for TE-rich genes in tumor and immune system tissues suggests that TEs play an important role in gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of gene ontology terms with group of genes. Bioinformatics 20:578–580

    Article  CAS  PubMed  Google Scholar 

  • Al-Shahrour F, Minguez P, Vaquerizas JM, Conde L, Dopazo J (2005) BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acid Res 33:460–464

    Article  Google Scholar 

  • Biemont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524

    Article  CAS  PubMed  Google Scholar 

  • Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew JL, Ruan Y, Wei CL, Ng HH, Liu ET (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18:1752–1762

    Article  CAS  PubMed  Google Scholar 

  • Burwinkel B, Kilimann MW (1998) Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J Mol Biol 277:513–517

    Article  CAS  PubMed  Google Scholar 

  • Chen JM, Stenson PD, Cooper DN, Ferec C (2005) A systematic analysis of LINE-1 endonuclease-dependent retranspositional events causing human genetic disease. Hum Genet 117:411–427

    Article  CAS  PubMed  Google Scholar 

  • De S, Teichmann SA, Babu MM (2009) The impact of genomic neighborhood on the evolution of human and chimpanzee transcriptome. Genome Res 19:785–794

    Article  CAS  PubMed  Google Scholar 

  • Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67:183–193

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple alignment with high accuracy and high throughput. Nucleic Acid Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny interference package. Cladistics 5:164–166

    Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    Article  CAS  PubMed  Google Scholar 

  • Fitch DHA, Bailey WJ, Tagle DA, Goodman M, Sieu L, Slightom JL (1991) Duplication of the γ-globin gene mediated by L1 long interspersed repetitive elements in a early ancestor of simian primates. Proc Nat Acad Sci USA 88:7396–7400

    Article  CAS  PubMed  Google Scholar 

  • Grover D, Majumder PP, Rao CB, Brahmachari SK, Mukerji M (2003) Nonrandom distribution of Alu elements in genes of various functional categories: insight from analysis of human chromosomes 21 and 22. Mol Biol Evol 20:1420–1424

    Article  CAS  PubMed  Google Scholar 

  • Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429:268–274

    Article  CAS  PubMed  Google Scholar 

  • Huda A, Marino-Ramirez L, Landsman D, Jordan IK (2009) Repetitive DNA elements, nucleosome binding and human gene expression. Gene 436:12–22

    Article  CAS  PubMed  Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH, Moran JV (1998) The impact of L1 retrotransposons on the human genome. Nat Genet 19:19–24

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) A high-resolution map of active promoters in the human genome. Nature 436:876–880

    Article  CAS  PubMed  Google Scholar 

  • Lerat E, Sémon M (2007) Influence of the transposable element neighborhood on human gene expression in normal and tumor tissues. Gene 396:303–311

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Bischerour J, Siddique A, Buisine N, Bigot Y, Chalmers R (2007) The human SETMAR protein preserves most of the activities of the ancestral Hmar1 transposase. Mol Cell Biol 27:1125–1132

    Article  PubMed  Google Scholar 

  • Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Nat Acad Sci USA 104:8005–8010

    Article  CAS  PubMed  Google Scholar 

  • Mariño-Ramírez L, Lewis KC, Landsman D, Jordan IK (2005) Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet Genome Res 110:333–341

    Article  PubMed  Google Scholar 

  • Menendez L, Benigno BB, McDonald JF (2004) L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas. Mol Cancer 3:12

    Article  PubMed  Google Scholar 

  • Mourier T, Willerslev E (2008) Does selection against transcriptional interference shape retroelement-free regions in mammalian genomes? PLoS ONE 3:e3760

    Article  PubMed  Google Scholar 

  • Myerowitz R, Hogikyan ND (1987) A deletion involving Alu sequences in the β-hexosaminidase α-chain gene of French Canadians with Tay-Sachs disease. J Biol Chem 262:15396–15399

    CAS  PubMed  Google Scholar 

  • Oliviero S, Monaci P (1988) RNA polymerase III promoter elements enhance transcription of RNA polymerase II genes. Nucleic Acids Res 16:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Patzke S, Lindeskog M, Munthe M, Aasheim HC (2002) Characterization of a novel human endogenous retrovirus, HERV-H/F, expressed in human leukemia cell lines. Virology 303:164–173

    Article  CAS  PubMed  Google Scholar 

  • Pereira V, Enard D, Eyre-Walker A (2009) The effect of transposable element insertions on gene expression evolution in rodents. PLoS ONE 4:e4321

    Article  PubMed  Google Scholar 

  • Perepelitsa-Belancio V, Deininger PL (2003) RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat Genet 35:363–366

    Article  CAS  PubMed  Google Scholar 

  • Polak P, Domany E (2006) Alu elements may contain binding sites for transcription factors and may play a role in regulation and developmental processes. BMC Genomics 7:133–148

    Article  PubMed  Google Scholar 

  • Roth DB, Craig NL (1998) VDJ recombination: a transposase goes to work. Cell 94:411–414

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shankar R, Grover D, Brahmachari SK, Mukerji M (2004) Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements. BMC Evol Biol 4:37

    Article  PubMed  Google Scholar 

  • Simons C, Pheasant M, Makunin IV, Mattick JS (2006) Transposon-free regions in mammalian genomes. Genome Res 16:164–172

    Article  CAS  PubMed  Google Scholar 

  • Simons C, Pheasant M, Makunin IV, Mattick JS (2007) Maintenance of transposon-free regions throughout vertebrate evolution. BMC Genomics 8:470

    Article  PubMed  Google Scholar 

  • Sironi M, Menozzi G, Comi GP, Cereda M, Cagliani R, Bresolin N, Pozzoli U (2006) Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns. Genome Biol 7:R120

    Article  PubMed  Google Scholar 

  • Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A (2009) BioMart—biological queries made easy. BMC Genomics 14:10–22

    Google Scholar 

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Nat Acad Sci USA 101:6062–6067

    Article  CAS  PubMed  Google Scholar 

  • Szpakowski S, Sun X, Lage JM, Dyer A, Rubinstein J, Kowalski D, Sasaki C, Costa J, Lizardi PM (2009) Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements. Gene 448:151–167

    Article  CAS  PubMed  Google Scholar 

  • The Chimpanzee Genome Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  Google Scholar 

  • The Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the drosophila phylogeny. Nature 450:203–218

    Article  Google Scholar 

  • The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  Google Scholar 

  • The Gene Ontology Consortium (2001) Creating the gene ontology resource: design and implementation. Genome Res 11:1425–1433

    Article  Google Scholar 

  • The International Human Genome Sequencing and Analysis Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • The Mouse Genome Sequencing and Analysis Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  Google Scholar 

  • The Rhesus Macaque Genome Sequencing and Analysis Consortium (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234

    Article  Google Scholar 

  • Urrutia AO, Ocaña LB, Hurst LD (2008) Do Alu repeats drive the evolution of the primate transcriptome? Genome Biol 9:R25

    Article  PubMed  Google Scholar 

  • Wang-Johanning F, Frost AR, Johanning GL, Khazaeli MB, LoBuglio AF, Shaw DR, Strong TV (2001) Expression of human endogenous retrovirus k envelope transcripts in human breast cancer. Clin Cancer Res 7:1553–1560

    CAS  PubMed  Google Scholar 

  • Wang-Johanning F, Liu J, Rycaj K, Huang M, Tsai K, Rosen DG, Chen DT, Lu DW, Barnhart KF, Johanning GL (2007) Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int J Cancer 120:81–90

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Sun X, Xie J, Lu Z (2008) Comparability of gene expression in human blood, immune and carcinoma cells. Appl Math Comput 205:178–184

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Christian Biémont for his comments and his critical reading of this manuscript, and Monika Ghosh for English correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Lerat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1048 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortada, H., Vieira, C. & Lerat, E. Genes Devoid of Full-Length Transposable Element Insertions are Involved in Development and in the Regulation of Transcription in Human and Closely Related Species. J Mol Evol 71, 180–191 (2010). https://doi.org/10.1007/s00239-010-9376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9376-5

Keywords

Navigation