Skip to main content

Advertisement

Log in

Hydrothermal Focusing of Chemical and Chemiosmotic Energy, Supported by Delivery of Catalytic Fe, Ni, Mo/W, Co, S and Se, Forced Life to Emerge

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Energised by the protonmotive force and with the intervention of inorganic catalysts, at base Life reacts hydrogen from a variety of sources with atmospheric carbon dioxide. It seems inescapable that life emerged to fulfil the same role (i.e., to hydrogenate CO2) on the early Earth, thus outcompeting the slow geochemical reduction to methane. Life would have done so where hydrothermal hydrogen interfaced a carbonic ocean through inorganic precipitate membranes. Thus we argue that the first carbon-fixing reaction was the molybdenum-dependent, proton-translocating formate hydrogenlyase system described by Andrews et al. (Microbiology 143:3633–3647, 1997), but driven in reverse. Alkaline on the inside and acidic and carbonic on the outside - a submarine chambered hydrothermal mound built above an alkaline hydrothermal spring of long duration - offered just the conditions for such a reverse reaction imposed by the ambient protonmotive force. Assisted by the same inorganic catalysts and potential energy stores that were to evolve into the active centres of enzymes supplied variously from ocean or hydrothermal system, the formate reaction enabled the rest of the acetyl coenzyme-A pathway to be followed exergonically, first to acetate, then separately to methane. Thus the two prokaryotic domains both emerged within the hydrothermal mound—the acetogens were the forerunners of the Bacteria and the methanogens were the forerunners of the Archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anbar AD (2008) Elements and evolution. Science 322:1481–1483

    CAS  PubMed  Google Scholar 

  • Andrews SC, Berkst BC, McClay J, Amblert A, Quail MA, Golby P, Guest JR (1997) A 12-cistron Escherichia coli operon (huf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143:3633–3647

    CAS  PubMed  Google Scholar 

  • Bada JL, Lazcano A (2003) Prebiotic soup—revisiting the Miller experiment. Science 300:745–746

    CAS  PubMed  Google Scholar 

  • Bagramyan K, Trchounian A (2003) Structural and functional features of formate hydrogen lyase, an enzyme of mixed acid fermentation from Escherichia coli. Biochemistry (Moscow) 68:1445–1458

    Google Scholar 

  • Baltscheffsky M (1967) Inorganic pyrophosphatase and ATP as energy donors in chromatophores from Rhodospirillum rubrum. Nature 216:241–243

    CAS  PubMed  Google Scholar 

  • Baltscheffsky H (1996) Energy conversion leading to the origin and early evolution of life: did inorganic pyrophosphate precede adenosine triphosphate? In: Baltscheffsky H (ed) Origin and evolution of biological energy conversion. VCH Publishers, Cambridge, pp 1–9

    Google Scholar 

  • Baltscheffsky H, von Stedingk LV, Heldt H-W, Baltscheffsky M (1966) Inorganic pyrophosphate: formation in bacterial photophosphorylation. Science 153:1120–1122

    CAS  PubMed  Google Scholar 

  • Baltscheffsky M, Schultz A, Baltscheffsky H (1999) H+-PPases: a tightly membrane-bound family. FEBS Lett 457:527–533

    CAS  PubMed  Google Scholar 

  • Baltscheffsky H, Perrson B, Schultz A, Pérez-Castiñeira JR, Baltscheffsky M (2004) Origin and evolution of very early sequence motifs in enzymes. In: Seckbach J et al (eds) Life in the universe. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 107–110

    Google Scholar 

  • Baymann F, Lebrun E, Brugna M, Schoepp-Cothenet B, Giudici-Orticoni MT, Nitschke W (2003) The redox construction kit: pre-LUCA evolution of energy-conserving enzymes. Philos Trans R Soc Lond B358:267–274

    Google Scholar 

  • Beinert H, Holm RH, Münck E (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659

    CAS  PubMed  Google Scholar 

  • Bethke C (1996) Geochemical reaction modeling. Oxford University Press, Oxford

    Google Scholar 

  • Beverskog B, Puigdomenech I (1997) Revised Pourbaix diagrams for nickel at 25–300°C. Corros Sci 39:969–980

    CAS  Google Scholar 

  • Bonomi F, Werth MT, Kurtz DM (1985) Assembly of FenSn(SR)2- (n = 2, 4) in aqueous media from iron salts, thiols and sulfur, sulfide, thiosulfide plus rhodonase. Inorg Chem 24:4331–4335

    CAS  Google Scholar 

  • Boone DR, Castenholz RW, Garrity G (eds) (2001) Bergey’s manual of systematic bacteriology, the archaea, photosynthetic bacteria, and deeply branched bacteria, vol 1, 2nd edn. Springer Verlag, Berlin

  • Boyington C, Gladyshev VD, Khangulov V, Stadtman TC, Sun PD (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an 4Fe4S cluster. Science 275:1305–1308

    CAS  PubMed  Google Scholar 

  • Braterman PS, Cairns-Smith AG (1983) Photo-oxidation of hydrated Fe2+-significance for banded iron formations. Nature 303:163–164

    CAS  Google Scholar 

  • Brugna-Guiral M, Tron P, Nitschke W, Stetter KO, Burlat B, Guigliarelli B, Bruschi M, Giudici-Orticoni M-T (2003) [NiFe] hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus: properties, function and phylogenetics. Extremophiles 7:145–157

    CAS  PubMed  Google Scholar 

  • Coleman M, Ader M, Chaudhuri SK, Coates JD (2003) Microbial isotopic fractionation of perchlorate chlorine. Appl Environ Microbiol 69:4997–5000

    CAS  PubMed  Google Scholar 

  • Crofts AR, Meinhardt SW, Jones KR, Snozzi M (1983) The role of the quinone pool in the cyclic electron-transfer chain Rhodopseudomonas sphaeroides. Biochim Biophys Acta 723:202–218

    CAS  Google Scholar 

  • da Silva JJRF, Williams RJP (1991) The biological chemistry of the elements. Clarendon Press, Oxford

    Google Scholar 

  • Darwin CR (1872) Origin of species by natural selection, 6th edn. John Murray, London

    Google Scholar 

  • Davis BK (2005) Coevolution theory of the genetic code: is the precursor–product hypothesis invalid? Bioessays 27:1308–1309

    PubMed  Google Scholar 

  • de Zwart II, Meade SJ, Pratt AJ (2004) Biomimetic phosphoryl transfer catalysed by iron(II)-mineral precipitates. Geochim Cosmochim Acta 68:4093–4098

    Google Scholar 

  • Di Giulio M (2003) The early phases of genetic code origin: conjectures on the evolution of coded catalysis. Orig Life Evol Biosph 33:479–489

    CAS  PubMed  Google Scholar 

  • Di Giulio M (2008) An extension of the coevolution theory of the origin of the genetic code. Biol Direct 3:37

    PubMed  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129

    CAS  PubMed  Google Scholar 

  • Drozdowicz YM, Rea PA (2001) Vacuolar H+-pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6:206–211

    CAS  PubMed  Google Scholar 

  • Ducluzeau A-L (2009) Origine enzymatique de la respiration aerobie. PhD thesis, Université de Provence, pp 356

  • Ducluzeau A-L, Ouchane S, Nitschke W (2008) The cbb 3 oxidases are an ancient innovation of the domain Bacteria. Mol Biol Evol 25:1158–1166

    CAS  PubMed  Google Scholar 

  • Ducluzeau A-L, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W (2009) Was nitric oxide the first deep electron sink? Trends Biochem Sci 34:9–15

    CAS  PubMed  Google Scholar 

  • Duval S, Ducluzeau A-L, Nitschke W, Schoepp-Cothenet B (2008) Enzyme phylogenies as markers for the oxidation state of the environment: the case of the respiratory arsenate reductase and related enzymes. BMC Evol Biol 8:206–219

    PubMed  Google Scholar 

  • Elston T, Wang H, Oster G (1998) Energy transduction in ATP synthase. Nature 391:510–513

    CAS  PubMed  Google Scholar 

  • Erickson BE, Helz GR (2000) Molybdenum (VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochim Cosmochim Acta 64:1149–1158

    CAS  Google Scholar 

  • Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5:525–532

    CAS  PubMed  Google Scholar 

  • Fuchs G (1989) Alternative pathways of autotrophic CO2 fixation. In: Schlegel HG, Bowen B (eds) Autotrophic bacteria. Science Technology, Madison, WI, pp 365–382

    Google Scholar 

  • Goldschmidt VM (1952) Geochemical aspects of the origin of complex organic molecules on Earth, as precursors to organic life. New Biol 12:97–105

    Google Scholar 

  • Haeckel E (1870) Natürliche Schöpfungsgeschichte: Gemeinverständliche wissenschaftliche Vorträge über die Entwicklungslehre im allgemeinen und diejenige von Darwin, Goethe und Lamarck im besonderen, über die Anwendung derselben auf den Ursprung des Menschen und andere damit zusammenhängende Grundfragen der Naturwissenschaft. Georg Reimer, Berlin, p 688

  • Haeckel E (1876) The history of creation: or the development of the Earth and its inhabitants by the action of natural causes, a popular exposition of evolution in general, and that of Darwin, Goethe and Lamark in particular vol 1, (trans: Lankester ER). Henry S. King & Co., London, p 374

  • Hagan WJ, Parker A, Steuerwald A, Hathaway M (2007) Phosphate solubility and the cyanate-mediated synthesis of pyrophosphate. Orig Life Evol Biosph 37:113–122

    CAS  PubMed  Google Scholar 

  • Harvey RB (1924) Enzymes of thermal algae. Science 50:481–482

    Google Scholar 

  • Hedderich R, Klimmeck O, Kröger A, Dirmeier R, Keller M, Stetter KO (1999) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381

    Google Scholar 

  • Hedlund J, Cantoni R, Baltscheffsky M, Baltscheffsky H, Persson B (2006) Analysis of ancient sequence motifs in the H+-PPase family. FEBS J 273:5183–5193

    CAS  PubMed  Google Scholar 

  • Helz GR, Miller CV, Charnock JM, Mosselmans JFW, Pattrick RAD, Garner CD, Vaughan DJ (1996) Mechanism of molybdenum removal from the sea and its concentration in black shales. EXAFS evidence. Geochimica Cosmochimica Acta 60:3631–3642

    CAS  Google Scholar 

  • Hennet RJ-C, Holm NG, Engel MH (1992) Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon? Naturwissenschaften 79:361–365

    CAS  PubMed  Google Scholar 

  • Hirono M, Nakanishi Y, Maeshima M (2007) Essential amino acid residues in the central transmembrane domains and loops for energy coupling of Streptomyces coelicolor A3(2) H+-pyrophosphatase. Biochim Biophys Acta 1767:930–939

    CAS  PubMed  Google Scholar 

  • Huber C, Wächtershäuser G (2003) Primordial reductive amination revisited. Tetrahedron Lett 44:1695–1697

    CAS  Google Scholar 

  • Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301:938–940

    CAS  PubMed  Google Scholar 

  • Hurt E, Hauska G (1982) Involvement of plastoquinone bound within the isolated cytochrome b6f complex from chloroplasts in oxidant-induced reduction of cytochrome b6. Biochim Biophys Acta 682:466–473

    CAS  Google Scholar 

  • Jones CM, Stres B, Rosenquist M, Hallin S (2008) Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol 25:1955–1966

    CAS  PubMed  Google Scholar 

  • Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG, Barley ME, Arndt NT, Zahnle K, Kamber BS (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458:750–753

    CAS  PubMed  Google Scholar 

  • Koonin E, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654

    CAS  PubMed  Google Scholar 

  • Krumholz LR, Harris SH, Tay ST, Suflita JM (1999) Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles. Appl Environ Microbiol 65:2300–2306

    CAS  PubMed  Google Scholar 

  • Lang SQ, Butterfield D, Lilley M (2007) Organic geochemistry of lost city hydrothermal fluids. InterRidge Theoretical Institute ‘Biogeochemical interaction at deep-sea vents’. Abstract (http://www.interridge.org/IRTI/2007/abstracts)

  • Lebrun E, Brugna M, Baymann F, Muller D, Lièvremont D, Lett MC, Nitschke W (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20:686–693

    CAS  PubMed  Google Scholar 

  • Leduc S (1911) The mechanism of life. Rebman Ltd, London

    Google Scholar 

  • Lolkema JS, Chaban Y, Boekema EJ (2003) Subunit composition, structure, and distribution of bacterial V-type ATPases. J Bioenerg Biomembr 35:323–335

    CAS  PubMed  Google Scholar 

  • Maden BEH (2000) Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem J 350:609–629

    CAS  PubMed  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap DP, Clark DP (2008) Brock biology of microorganisms, 12th edn. Benjamin Cummings, San Francisco

  • Marshall WL (1994) Hydrothermal synthesis of amino acids. Geochim Cosmochim Acta 58:2099–2106

    CAS  Google Scholar 

  • Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc B362:1887–1925

    Google Scholar 

  • Martin RS, Mather TA, Pyle DM (2007) Volcanic emissions and the early Earth atmosphere. Geochim Cosmochim Acta 71:3673–3685

    CAS  Google Scholar 

  • Mat W, Xue H, Wong JT (2008) The genomics of LUCA. Front Biosci 13:5605–5613

    CAS  PubMed  Google Scholar 

  • McGlynn SH, Mulder DW, Shepard EM, Broderick JB, Peters JW (2009) Hydrogenase cluster biosynthesis: organometallic chemistry nature’s way. Dalton Trans 22:4274–4285

    PubMed  Google Scholar 

  • Mereschkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Centralbl 30: 278–303, 321–347, 353–367

    Google Scholar 

  • Milner-White EJ, Russell MJ (2008) Predicting the conformations of peptides and proteins in early evolution. Biol Direct 3:3. doi:10.1186/1745-6150-3-3

    PubMed  Google Scholar 

  • Mitchell P (1967) Proton-translocation phosphorylation in mitochondria, chloroplasts and bacteria: natural fuel cells and solar cells. FASEB J 26:1370–1379

    CAS  Google Scholar 

  • Morita RY (2000) Is H2 the universal energy source for long-term survival? Microb Ecol 38:307–320

    Google Scholar 

  • Mulholland SE, Gibney BR, Rabanal F, Dutton PL (1999) Determination of nonligand amino acids critical to [4Fe-4S]2+/+ assembly in ferredoxin maquettes. Biochemistry 38:10442–10448

    CAS  PubMed  Google Scholar 

  • Müller V, Grüber G (2003) ATP synthases: structure, function and evolution of unique energy converters. Cell Mol Life Sci 60:473–494

    Google Scholar 

  • Müller V, Imkamp F, Biegel E, Schmidt S, Dilling S (2003) Discovery of a ferredoxin:NAD + -oxidoreductase (Rnf) in Acetobacterium woodii: a novel coupling site in acetogens. Ann NY Acad Sci 1125:137–146

    Google Scholar 

  • Nekrasov IY-A, Konyushok AA (1982) The physicochemical conditions of tungstenite formation. Mineralogicheskii Zhurnal 4:33–40 (in Russian)

    CAS  Google Scholar 

  • Nitschke W, Kramer DM, Riedel A, Liebl U (1995) From naphtho- to benzoquinones—(r)evolutionary reorganizations of electron transfer chains. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol 1. Kluwer Academic Publishers, Dordrecht, pp 945–950

    Google Scholar 

  • Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123

    CAS  PubMed  Google Scholar 

  • Oremland RS, Blum JS, Culbertson CW, Visscher PT, Miller LG, Dowdle P, Strohmaier FE (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60:3011–3019

    CAS  PubMed  Google Scholar 

  • Osborn HF (1917) The origin and evolution of life: on the theory of action, reaction and interaction of energy. Charles Scribner’s Sons, New York, NY

    Google Scholar 

  • Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archaean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41

    CAS  PubMed  Google Scholar 

  • Ragsdale SW (1997) The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won. Biofactors 6:3–11

    CAS  PubMed  Google Scholar 

  • Rickard D, Butler IB, Olroyd A (2001) A novel iron sulphide switch and its implications for Earth and planetary science. Earth Planet Sci Lett 189:85–91

    CAS  Google Scholar 

  • Robertson DE, Prince RC, Bowyer JR, Matsuura K, Dutton PL, Ohnishi T (1984) Thermodynamic properties of the semiquinone and its binding site in the ubiquinol-cytochrome (c2) oxidoreductase of respiratory and photosynthetic systems. J Biol Chem 259:1758–1763

    CAS  PubMed  Google Scholar 

  • Russell MJ, Arndt NT (2005) Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2:97–111

    Article  CAS  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc London 154:377–402

    CAS  PubMed  Google Scholar 

  • Russell MJ, Hall AJ (2006) The onset and early evolution of life. In: Kesler SE, Ohmoto H (eds) Evolution of early earth’s atmosphere, hydrosphere, and biosphere—constraints from ore deposits. Geological Society of America, Memoir 198, pp 1–32

  • Russell MJ, Hall AJ (2009) A hydrothermal source of energy and materials at the origin of life. In: Chemical evolution II: from origins of life to modern society. American Chemical Society, (in press)

  • Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29:358–363

    CAS  PubMed  Google Scholar 

  • Russell MJ, Hall AJ, Turner D (1989) In vitro growth of iron sulphide chimneys: possible culture chambers for origin-of-life experiments. Terra Nova 1:238–241

    Google Scholar 

  • Russell MJ, Daniel RM, Hall AJ (1993) On the emergence of life via catalytic iron sulphide membranes. Terra Nova 5:343–347

    Google Scholar 

  • Russell MJ, Daniel RM, Hall AJ, Sherringham J (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 39:231–243

    CAS  Google Scholar 

  • Schoepp-Cothenet B, Lieutaud C, Baymann F, Verméglio A, Friedrich T, Kramer DM, Nitschke W (2009) Menaquinone as pool quinone in a purple bacterium. Proc Natl Acad Sci USA 106:8549–8554

    CAS  PubMed  Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123:105–107

    PubMed  Google Scholar 

  • Schultz A, Baltscheffsky M (2003) Properties of mutated Rhodospirillum rubrum H+-pyrophosphatase expressed in Escherichia coli. Biochim Biophys Acta 1607:141–151

    CAS  PubMed  Google Scholar 

  • Schulzke C (2005) Temperature dependent electrochemical investigations of molybdenum and tungsten oxobisdithiolene complexes. Dalton Trans 713–720

  • Schütz M, Brugna M, Lebrun E, Baymann F, Huber R, Stetter KO, Hauska G, Toci R, Lemesle-Meunier D, Tron P, Schmidt C, Nitschke W (2000) Early evolution of cytochrome bc-complexes. J Mol Biol 300:663–676

    PubMed  Google Scholar 

  • Seewald JS, Zolotov MY, McCollom T (2006) Experimental investigation of single carbon compounds under hydrothermal conditions. Geochimica Cosmochimica Acta 70:446–460

    CAS  Google Scholar 

  • Seward TM, Barnes HL (1997) Metal transport in hydrothermal ore fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. John Wiley & Sons, New York, pp 435–486

    Google Scholar 

  • Slesarev AI, Mezhevaya KV, Makarova KS et al (2002) The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci USA 99:4644–4649

    CAS  PubMed  Google Scholar 

  • Spivack AJ, Staudigel H (1994) Low-temperature alteration of the upper oceanic crust and the alkalinity budget of seawater. Chem Geol 115:239–247

    CAS  Google Scholar 

  • Staudigel H, Hart SR, Richardson SH (1981) Alteration of the oceanic crust: processes and timing. Earth Planet Sci Lett 52:311–327

    CAS  Google Scholar 

  • Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305:309–311

    CAS  Google Scholar 

  • Traube M (1867) Experimente zur Theorie der Zellenbildung und Endosmose. Archiv Anat u Physiol 1867:87–165

    Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbial evidence for Fe(III) reduction on early Earth. Nature 395:65–67

    CAS  PubMed  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    CAS  PubMed  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    CAS  PubMed  Google Scholar 

  • Volbeda A, Fontecilla-Camps JC (2006) Catalytic nickel–iron–sulfur clusters: from minerals to enzymes. In: Simmonneaux G (ed) Topics in organometallic chemistry, vol 17. Springer, Berlin, pp 57–82

    Google Scholar 

  • Von Jagow G, Ljungdahl PO, Graf P, Ohmishi T, Trumpower BL (1984) An inhibitor of mitochondrial respiration that binds to cytochromes and displaces quinone from the iron-sulfur proteins of the cytochrome bc1 complex. J Biol Chem 259:6318–6326

    Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  Google Scholar 

  • Walker JCG (1985) Carbon dioxide on the early Earth. Orig Life Evol Biosph 16:117–127

    CAS  PubMed  Google Scholar 

  • Wallace W, Ward T, Breen A, Attaway H (1996) Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J Ind Microbiol 16:68–72

    CAS  Google Scholar 

  • Weiner J, Beaussart F, Bornberg-Bauer E (2006) Domain deletions and substitutions in the modular protein evolution. FEBS J 273:2037–2047

    CAS  PubMed  Google Scholar 

  • Williams RJP, Frausto da Silva JJR (2003) Evolution was chemically constrained. J Theor Biol 220:323–343

    CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

  • Wong JT (2009) Introduction. In: Wong JT, Laszcano A (eds) Prebiotic evolution & astrobiology, Chap 1. Landes Bioscience, Austin, Texas (in press)

  • Wong JT (2009) Root of life. In: Wong JT, Laszcano A (eds) Prebiotic evolution & astrobiology, Chap 15. Landes Bioscience, Austin, Texas (in press)

  • Wong JT, Chen J, Mat WK, Ng SK, Xue H (2007) Polyphasic evidence delineating the root of life and roots of biological domains. Gene 403:39–52

    CAS  PubMed  Google Scholar 

  • Wood HG (1977) Some reactions in which inorganic pyrophosphate replaces ATP and serves as a source of energy. Fed Proc 36:2197–2205

    CAS  PubMed  Google Scholar 

  • Yamagata Y, Wanatabe H, Saitoh M, Namba T (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519

    CAS  PubMed  Google Scholar 

  • Yokey HP (1995) Comments on ‘‘Let there be Life; Thermodynamic Reflections on Biogenesis and Evolution’’ by Avshalom C. Elitzur. J Theor Biol 176:349–355

    Google Scholar 

  • Zachara JM, Kukkadapu RK, Frederickson JM, Gorby YA, Smith SC (2002) Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol J 19:179–207

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Anne-Lise Ducluzeau, Allan Hall, Isik Kanik, Bill Martin, Randall Mielke, Shawn McGlynn, Carola Schulzke and Anne Volbeda for help and support. WN was financially supported by the French Agence Nationale pour la Recherche (ANR-06-BLAN-0384). MJR’s research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration: Exobiology and Evolutionary Biology and supported by NASA’s Astrobiology Institute (Icy Worlds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitschke, W., Russell, M.J. Hydrothermal Focusing of Chemical and Chemiosmotic Energy, Supported by Delivery of Catalytic Fe, Ni, Mo/W, Co, S and Se, Forced Life to Emerge. J Mol Evol 69, 481–496 (2009). https://doi.org/10.1007/s00239-009-9289-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9289-3

Keywords

Navigation