Skip to main content
Log in

Origin of Self-Replicating Biopolymers: Autocatalytic Feedback Can Jump-Start the RNA World

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Life is based on biopolymers that have the ability to replicate themselves. Here we consider how a self-replicating RNA system may have originated. We consider a reaction system in which polymerization is possible by the addition of an activated monomer to the end of a chain. We suppose that a small fraction of polymers longer than some minimum length L have the ability to act as polymerase ribozymes. Polymerization can occur spontaneously at a slow rate and can also be catalyzed by polymerase ribozymes, if these ribozymes exist. The system contains autocatalytic feedback: increasing the polymerization rate causes the ribozyme concentration to increase, which causes the polymerization rate to further increase. For an infinite volume, the dynamics are deterministic. There are two stable states: a ‘dead’ state with a very low concentration of ribozymes and a polymerization rate almost equal to the spontaneous rate, and a ‘living’ state with a high concentration of ribozymes and a high rate of polymerization occurring via ribozyme catalysis. In a finite volume, such as the interior of a lipid vesicle or other small compartment, the reaction dynamics is stochastic and concentration fluctuations can occur. Using a stochastic simulation, we show that if a small number of ribozymes is initially formed spontaneously, this can be enough to drive the system from the dead to the living state where ribozyme-catalyzed synthesis of large numbers of additional ribozymes occurs. This transition occurs most easily in volumes of intermediate size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alfonsi A, Cances E, Turinici G, Ventura BD, Huisinga W (2005) Exact simulation of hybrid stochastic and deterministic models for biochemical systems. ESAIM proceeding. 14:1–13

    Google Scholar 

  • Anet FAL (2004) The place of metabolism in the origin of life. Curr Opin Chem Biol 8:654–659

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP, Unrau PJ (1999) Constructing an RNA World. Trends Biochem Sci 24:M9–M13

    Article  CAS  Google Scholar 

  • Bean HD, Anet FAL, Gould IR, Hud NV (2006) Glyoxylate as a backbone linkage for a prebiotic ancestor of RNA. Orig Life Evol Biosph 36:39–63

    Article  CAS  PubMed  Google Scholar 

  • Briones C, Stich M, Manrubia SC (2009) The dawn of the RNA World: toward functional complexity through ligation of random RNA oligomers. RNA 15:743–749

    Article  CAS  PubMed  Google Scholar 

  • De Duve C (2003) A research proposal on the origin of life. Orig Life Evol Biosph 33:559–574

    Article  PubMed  Google Scholar 

  • Doudna JA, Cech TR (2002) The chemical repertoire of natural ribozymes. Nature 418:222–228

    Article  CAS  PubMed  Google Scholar 

  • Dyson FJ (1999) Origins of life, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Eigen M, McCaskill J, Schuster P (1989) The molecular quasispecies. Adv Chem Phys 79:149–263

    Article  Google Scholar 

  • Ekland EH, Bartel DP (1996) RNA-catalysed RNA polymerization using nucleoside triphophates. Nature 382:373–376

    Article  CAS  PubMed  Google Scholar 

  • Ferris JP (2002) Montmorillonite catalysis of 30–50 mer oligonucleotides: laboratory demonstration of potential steps in the origin of the RNA World. Orig Life Evol Biosph 32:311–332

    Article  CAS  PubMed  Google Scholar 

  • Ferris JP, Hill AR, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61

    Article  CAS  PubMed  Google Scholar 

  • Ganti T (1979) A theory of biochemical supersystems and its application to problems of natural and artificial biogenesis. University Park Press, Baltimore

    Google Scholar 

  • Gilbert W (1986) Origins of life—the RNA World. Nature 319:618 618

    Article  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    Article  CAS  Google Scholar 

  • Jeffares DC, Poole AM, Penny D (1998) Relics from the RNA world. J Mol Evol 46:18–36

    Article  CAS  PubMed  Google Scholar 

  • Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319–1325

    Article  CAS  PubMed  Google Scholar 

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    Article  CAS  PubMed  Google Scholar 

  • Kang TJ, Suga H (2007) In vitro selection of a 5′-purine ribonucleotide transferase ribozyme. Nucleic Acids Res 35:4186–4194

    Article  CAS  PubMed  Google Scholar 

  • Kauffman SA (1993) The origins of order: self organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    Article  CAS  PubMed  Google Scholar 

  • Lindahl PA (2004) Stepwise evolution of nonliving to living chemical system. Orig Life Evol Biosph 34:371–389

    Article  CAS  PubMed  Google Scholar 

  • McGinness KE, Wright MC, Joyce GF (2002) Continuous in vitro evolution of a ribozyme that catalyzes three successive nucleotidyl addition reactions. Chem Biol 9:585–596

    Article  CAS  PubMed  Google Scholar 

  • Morowitz HJ, Kostelnik JD, Yang J, Cody GD (2000) The origin of intermediary metabolism. Proc Natl Acad Sci 97:7704–7708

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  CAS  PubMed  Google Scholar 

  • Pahle J (2009) Biochemical simulations: stochastic, approximate stochastic and hybrid approaches. Brief Bioinform 10:53–64

    Article  CAS  PubMed  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  CAS  PubMed  Google Scholar 

  • Rajamani S, Vlassov A, Benner S, Coombs A, Olasagasti F, Deamer D (2009) Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig Life Evol Biosph 38:57–74

    Article  Google Scholar 

  • Romero-Lopez C, Diaz-Gonzalez R, Berzal-Herranz A (2007) RNA selection and evolution in vitro: Powerful techniques for the analysis and identification of new molecular tools. Biotechnol Biotechnol Equip 21:272–282

    CAS  Google Scholar 

  • Ruediger S, Shuai JW, Huisinga W, Nagaiah C, Warnecke G, Parker I, Falckey M (2007) Hybrid Stochastic and deterministic simulations of calcium blips. Biophys J 93:1847–1857

    Article  CAS  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc (Lond) 154:377–402

    Article  CAS  Google Scholar 

  • Segre D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci USA 97:4112–4117

    Article  CAS  PubMed  Google Scholar 

  • Segre D, Ben-Eli D, Deamer DW, Lancet D (2001) The lipid world. Orig Life Evol Biosph 31:119–145

    Article  CAS  PubMed  Google Scholar 

  • Shapiro R (2006) Small molecule interactions were central to the origin of life. Q Rev Biol 81:105–125

    Article  PubMed  Google Scholar 

  • Sleeper HL, Orgel LE (1979) The catalysis of nucleotide polymerization by compounds of divalent lead. J Mol Evol 12:357–364

    Article  CAS  PubMed  Google Scholar 

  • Szathmary E (2000) The evolution of replicators. Philos Trans R Soc Lond B Biol Sci 355:1669–1676

    Article  CAS  PubMed  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing Life. Nature 409:387–390

    Article  CAS  PubMed  Google Scholar 

  • Vicens Q, Cech TR (2009) A natural ribozyme with 3′, 5′ RNA ligase activity. Nat Chem Biol 5(2):97–99

    Article  CAS  PubMed  Google Scholar 

  • Wächtershäuser G (1997) The origin of life and its methodological challenge. J Theor Biol 187:483–494

    Article  PubMed  Google Scholar 

  • Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Higgs PG (2008) Compositional Inheritance: comparison of self-assembly and catalysis. Orig Life Evol Biosph 38:399–418

    Article  PubMed  Google Scholar 

  • Zaher HS, Unrau PJ (2007) Selection of an improved RNA polymerase with superior extension and fidelity. RNA 13:1017–1026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Sciences and Engineering Research Council, the Canada Research Chairs organization, and the SHARCNET computing consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Higgs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Higgs, P.G. Origin of Self-Replicating Biopolymers: Autocatalytic Feedback Can Jump-Start the RNA World. J Mol Evol 69, 541–554 (2009). https://doi.org/10.1007/s00239-009-9276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9276-8

Keywords

Navigation