Skip to main content
Log in

A Comparison Among the Models Proposed to Explain the Origin of the tRNA Molecule: A Synthesis

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

A comparison is made among all the models proposed to explain the origin of the tRNA molecule. The conclusion reached is that, for the model predicting that the tRNA molecule originated after the assembly of two hairpin-like structures, molecular fossils have been found in the half-genes of the tRNAs of Nanoarchaeum equitans. These might be the witnesses of the transition stage predicted by the model through which the evolution of the tRNA molecule passed, thus providing considerable corroboration for this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bloch DP, McArthur B, Mirrop S (1985) tRNA-rRNA sequence omologies: evidence from an ancient modular format shared by tRNAs and rRNAs. BioSystems 17:209–225

    Article  PubMed  CAS  Google Scholar 

  • Darnell JE Jr (1978) Implications of RNA-RNA splicing in evolution of eukaryotic cells. Science 202:1250–1260

    Article  Google Scholar 

  • de Duve C (1988) The second genetic code. Nature 33:117–118

    Article  Google Scholar 

  • Demongeot J, Moreira A (2007) A possible circular RNA at the origin of life. J Theor Biol 249:314–324

    Article  PubMed  CAS  Google Scholar 

  • Dick TP, Schamel WA (1995) Molecular evolution of transfer RNA from two precursor hairpins: implications for the origin of protein synthesis. J Mol Evol 41:1–9

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (1992) On the origin of the transfer RNA molecule. J Theor Biol 159:199–214

    Article  PubMed  Google Scholar 

  • Di Giulio M (1994) On the origin of proteins synthesis: a speculative model based on hairpin RNA structures. J Theor Biol 171:303–308

    Article  PubMed  Google Scholar 

  • Di Giulio M (1995) Was it an ancient gene codifyng for a hairpin RNA that, by means of direct duplication, gave rise to the primitive tRNA molecule? J Theor Biol 177:95–101

    Article  PubMed  Google Scholar 

  • Di Giulio M (1999) The non-monophyletic origin of tRNA molecule. J Theor Biol 197:403–414

    Article  PubMed  Google Scholar 

  • Di Giulio M (2002) Genetic code origin: Are the pathways of the type Glu-tRNAGln->Gln-tRNAGln molecular fossils or not? J Mol Evol 55:616–622

    Article  PubMed  Google Scholar 

  • Di Giulio M (2004) The origin of the tRNA molecule: implications for the origin of protein synthesis. J Theor Biol 226:89–93

    Article  PubMed  Google Scholar 

  • Di Giulio M (2006a) The non-monophyletic origin of the tRNA molecule and the origin of genes only after the evolutionary stage of the Last Universal Common Ancestor (LUCA). J Theor Biol 240:343–352

    Article  PubMed  Google Scholar 

  • Di Giulio M (2006b) Nanoarchaeum equitans is a living fossil. J Theor Biol 242:257–260

    Article  PubMed  Google Scholar 

  • Di Giulio M (2008a) Permuted tRNA genes of Cyanidioschyzon merolae, the origin of the tRNA molecule and the root of the Eukarya domain. J Theor Biol 253:587–592

    Article  PubMed  Google Scholar 

  • Di Giulio M (2008b) Split genes, ancestral genes. In: Tze-Fei Wong J, Lazcano A (eds) Prebiotic evolution and astrobiology, chap 13. Landes Bioscience, Austin, TX

    Google Scholar 

  • Doolittle WF (1978) Genes in pieces: were they ever together? Nature 272:581–582

    Article  Google Scholar 

  • Eigen M, Winkler-Oswatitsch R (1981) Transfer-RNA, an early gene? Naturwissenschaften 68:282–292

    Article  PubMed  CAS  Google Scholar 

  • Fujishima K, Sugahara J, Tomita M, Kanai A (2008) Sequence evidence in the archaeal genomes that tRNAs emerged through the combination of ancestral genes as 5′ and 3′ tRNA halves. PLoS ONE 3(2):e1622

    Article  PubMed  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271:501

    Article  PubMed  CAS  Google Scholar 

  • Hopfield JJ (1978) Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence and kinetic proofreading. Proc Natl Acad Sci USA 75:4334–4338

    Article  PubMed  CAS  Google Scholar 

  • Maizels N, Weiner AM (1993) The genomic tag hypothesis: modern viruses as molecular fossils of ancient strategies for genomic replication. In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 577–602

    Google Scholar 

  • Maizels N, Weiner AM (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci USA 91:6729–6734

    Article  PubMed  CAS  Google Scholar 

  • Moller W, Janssen GMC (1990) Transfer RNAs for primordial amino acids contains remnants of a primitive code at position 3 to 5. Biochimie 72:361–368

    Article  PubMed  CAS  Google Scholar 

  • Moller W, Janssen GMC (1992) Statistical evidence for remnants of primordial code in the acceptor stem of prokaryotic transfer RNA. J Mol Evol 34:471–477

    Article  PubMed  CAS  Google Scholar 

  • Nazarea AD, Bloch DP, Semrau AC (1985) Detection of a fundamental modular format common to transfer and ribosomal RNAs. Proc Natl Acad Sci USA 82:5337–5341

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–383

    Article  PubMed  CAS  Google Scholar 

  • Randau L, Munch R, Hohn M, Jahn D, Soll D (2005) Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′- and 3′-halves. Nature 433:537–541

    Article  PubMed  CAS  Google Scholar 

  • Randau L, Soll D (2008) Transfer RNA genes in pieces. EMBO Rep 9:623–628

    Article  PubMed  CAS  Google Scholar 

  • Rodin S, Rodin A (2006) Origin of the genetic code: first aminoacyl-tRNA synthetases could replace isofunctional ribozymes when only the second base of codons was established. DNA Cell Biol 25:365–375

    Article  PubMed  CAS  Google Scholar 

  • Rodin S, Ohno S, Rodin A (1993) Transfer RNA with complementary anticodon: could they reflect early evolution of discrimative genetic code adaptors? Proc Natl Acad Sci USA 90:4723–4727

    Article  PubMed  CAS  Google Scholar 

  • Rodin S, Rodin A, Ohno S (1996) The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc Natl Acad Sci USA 93:4537–4542

    Article  PubMed  CAS  Google Scholar 

  • Schimmel P, Giege R, Morras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768

    Article  PubMed  CAS  Google Scholar 

  • Schimmel P, Ribas de Pouplana L (1995) Transfer RNA: from minihelix to genetic code. Cell 81:983–986

    Article  PubMed  CAS  Google Scholar 

  • Soma A, Onodera A, Sugahara J, Kanai A, Yachie N, Tomita M, Kawamura F, Sekine Y (2007) Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science 318:450–453

    Article  PubMed  CAS  Google Scholar 

  • Sun FJ, Caetano-Anolles G (2008) The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J Mol Evol 66:21–35

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Kikuchi Y (2001) Origin of cloverleaf of transfer RNA—the double-hairpin model: implication for the role of tRNA intron and the long extra loop. Viva Origino 29:134–142

    CAS  Google Scholar 

  • Widmann J, Di Giulio M, Yarus M, Knight R (2005) tRNA creation by hairpin duplication. J Mol Evol 61:524–530

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1969) The biological significance of the genetic code. Prog Mol Subcell Biol 1:5–46

    CAS  Google Scholar 

  • Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Shepperd K, Soll D (2008) Amoni acid modifications on tRNA. Acta Biochim Biophys Sin 40:539–553

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Di Giulio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giulio, M. A Comparison Among the Models Proposed to Explain the Origin of the tRNA Molecule: A Synthesis. J Mol Evol 69, 1–9 (2009). https://doi.org/10.1007/s00239-009-9248-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9248-z

Keywords

Navigation