Skip to main content
Log in

The Deficit of Male-Biased Genes on the D. melanogaster X Chromosome Is Expression-Dependent: A Consequence of Dosage Compensation?

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In Drosophila, there is a consistent deficit of male-biased genes on the X chromosome. It has been suggested that male-biased genes may evolve from initially unbiased genes as a result of increased expression levels in males. If transcription rates are limited, a large increase in expression in the testis may be harder to achieve for single-copy X-linked genes than for autosomal genes, because they are already hypertranscribed due to dosage compensation. This hypothesis predicts that the larger the increase in expression required to make a male-biased gene, the lower the chance of this being achievable if it is located on the X chromosome. Consequently, highly expressed male-biased genes should be located on the X chromosome less often than lowly expressed male-biased genes. This pattern is observed in our analysis of publicly available data, where microarray data or EST data are used to detect male-biased genes in D. melanogaster and to measure their expression levels. This is consistent with the idea that limitations in transcription rates may prevent male-biased genes from accumulating on the X chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Betrán E, Thornton K, Long M (2002) Retroposed new genes out of the X in Drosophila. Genome Res 12:1854–1859

    Article  PubMed  Google Scholar 

  • Charlesworth B (1978) Model for evolution of Y chromosomes and dosage compensation. Proc Natl Acad Sci USA 75:5618–5622

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Coyne JA, Barton NH (1987) The relative rates of evolution of sex-chromosomes and autosomes. Am Nat 130:113–146

    Article  Google Scholar 

  • Connallon T, Knowles LL (2005) Intergenomic conflict revealed by patterns of sex-biased gene expression. Trends Genet 21:495–499

    Article  PubMed  CAS  Google Scholar 

  • Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–352

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H, Parsch J (2007) The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet 8:689–698

    Article  PubMed  CAS  Google Scholar 

  • Emerson JJ, Cardoso-Moreira M, Borevitz JO, Long M (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 320:1629–1631

    Article  PubMed  CAS  Google Scholar 

  • Gupta V, Parisi M, Sturgill D, Nuttall R, Doctolero M, Dudko OK, Malley JD, Eastman PS, Oliver B (2006) Global analysis of X-chromosome dosage compensation. J Biol 5:3.1–3.10

    Google Scholar 

  • Hense W, Baines JF, Parsch J (2007) X chromosome inactivation during Drosophila spermatogenesis. PLoS Biol 5:e273

    Article  PubMed  Google Scholar 

  • Kaiser VB, Ellegren H (2006) Nonrandom distribution of genes with sex-biased expression in the chicken genome. Evol Int J Org Evol 60:1945–1951

    CAS  Google Scholar 

  • Khil PP, Smirnova NA, Romanienko PJ, Camerini-Otero RD (2004) The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat Genet 36:642–646

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV (2002) Selection in the evolution of gene duplications. Genome Biol 3:RESEARCH0008

    Google Scholar 

  • Lercher MJ, Urrutia AO, Hurst LD (2003) Evidence that the human X chromosome is enriched for male-specific but not female-specific genes. Mol Biol Evol 20:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Gupta V, Vermilyea MD, Falciani F, Lee JT, O’Neill LP, Turner BM (2007) Dosage compensation in the mouse balances up-regulation and silencing of X-linked genes. PLoS Biol 5:e326

    Article  PubMed  Google Scholar 

  • Nguyen DK, Disteche CM (2006) Dosage compensation of the active X chromosome in mammals. Nat Genet 38:47–53

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, New York

    Google Scholar 

  • Parisi M, Nuttall R, Naiman D, Bouffard G, Malley J, Andrews J, Eastman S, Oliver B (2003) Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 299:697–700

    Article  PubMed  CAS  Google Scholar 

  • Reinke V, Gil IS, Ward S, Kazmer K (2004) Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131:311–323

    Article  PubMed  CAS  Google Scholar 

  • Rice WR (1984) Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735–742

    Article  Google Scholar 

  • Schwab M (1999) Oncogene amplification in solid tumors. Semin Cancer Biol 9:319–325

    Article  PubMed  CAS  Google Scholar 

  • Seoighe C, Wolfe KH (1999) Yeast genome evolution in the post-genome era. Curr Opin Microbiol 2:548–554

    Article  PubMed  CAS  Google Scholar 

  • Straub T, Becker PB (2007) Dosage compensation: the beginning and end of generalization. Nat Rev Genet 8:47–57

    Article  PubMed  CAS  Google Scholar 

  • Sturgill D, Zhang Y, Parisi M, Oliver B (2007) Demasculinization of X chromosomes in the Drosophila genus. Nature 450:238–241

    Article  PubMed  CAS  Google Scholar 

  • Vicoso B, Charlesworth B (2006) Evolution on the X chromosome: unusual patterns and processes. Nat Rev Genet 7:645–653

    Article  PubMed  CAS  Google Scholar 

  • Wang PJ, McCarrey JR, Yang F, Page DC (2001) An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27:422–426

    Article  PubMed  Google Scholar 

  • Wu C-I, Xu EY (2003) Sexual antagonism and X inactivation—the SAXI hypothesis. Trends Genet 19:243–247

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Sturgill D, Parisi M, Kumar S, Oliver B (2007) Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 450:233–237

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank two referees for very helpful comments on the manuscript. This work was funded by a Portuguese Foundation for Science and Technology scholarship to B.V., and B.C. was supported by the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Charlesworth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicoso, B., Charlesworth, B. The Deficit of Male-Biased Genes on the D. melanogaster X Chromosome Is Expression-Dependent: A Consequence of Dosage Compensation?. J Mol Evol 68, 576–583 (2009). https://doi.org/10.1007/s00239-009-9235-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9235-4

Keywords

Navigation