Skip to main content
Log in

Genetic Signature of Rice Domestication Shown by a Variety of Genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Cultivated rice was domesticated from common wild rice. However, little is known about genetic adaptation under domestication. We investigated the nucleotide variation of both cultivated rice and its wild progenitors at 22 R-gene and 10 non–R-gene loci. A significant regression was observed between wild rice and rice cultivars in their polymorphic levels, particularly in their nonsynonymous substitutions (θ a ). Our data also showed that a similar proportion (approximately 60%) of nucleotide variation in wild rice was retained in cultivated rice in both R-genes and non–R-genes. Interestingly, the slope always was >1 and the intercept always >0 in linear regressions when a cultivar’s polymorphism was x-axis. The slope and intercept values can provide a basis by which to estimate the founder effect and the strength of artificial direct selection. A larger founder effect than previously reported and a strong direct-selection effect were shown in rice genes. In addition, two-directional selection was commonly found in differentiated genes between indica and japonica rice subspecies. This kind of selection may explain the mosaic origins of indica and japonica rice subspecies. Furthermore, in most R-genes, no significant differentiation between cultivated and wild rice was detected. We found evidence for genetic introgression from wild rice, which may have played an important role during the domestication of rice R-genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP et al (2004) Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306:1957–1960

    Article  PubMed  CAS  Google Scholar 

  • Amante-Bordeos A, Stich LA, Nelson R, Dalmacio RD, Oliva NP et al (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice. Theor Appl Genet 84:345–354

    Article  Google Scholar 

  • Bakker EG, Toomajian C, Kreitman M, Bergelson J (2006) A genome-wide survey of R gene polymorphisms in Arabidopsis. Plan Cell 18:1803–1818

    Article  CAS  Google Scholar 

  • Bakker EG, Traw MB, Toomajian C, Kreitman M, Bergelson J (2008) Low levels of polymorphism in genes that control the activation of defense response in Arabidopsis thaliana. Genetics 178:2031–2043

    Article  PubMed  CAS  Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Araki H, Wang Q, Zhang P, Yang S, Chen JQ, Tian D (2007a) Highly asymmetric rice genomes. BMC Genomics 8:154

    Article  PubMed  Google Scholar 

  • Ding J, Zhang W, Jing Z, Chen JQ, Tian D (2007b) Unique pattern of R-gene variation within populations in Arabidopsis. Mol Genet Genomics 277:619–629

    Article  PubMed  CAS  Google Scholar 

  • Elli J, Dodds P, Pryor T (2000) Structure function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    Article  Google Scholar 

  • Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014

    PubMed  CAS  Google Scholar 

  • Jiang H, Wang C, Ping L, Tian D, Yang S (2007) Pattern of LRR nucleotide variation in plant resistance genes. Plant Sci 173:253–261

    Article  CAS  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Lu G, Zeng L, Wang GL (2002) The two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics 267:472–480

    Article  PubMed  CAS  Google Scholar 

  • Londo JP, Chiang YC, Huang KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA 103:9578–9583

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Crease TJ (1990) The analysis of population survey data on DNA sequence variation. Mol Biol Evol 7:377–394

    PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134

    Article  PubMed  CAS  Google Scholar 

  • Moffat AS (2001) Finding new ways to fight plant diseases. Science 292:2270–2273

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, NY

    Google Scholar 

  • Nimchuk Z, Eulgem T, Holt BF 3rd, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609

    Article  PubMed  CAS  Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA 104:8641–8648

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Sang T, Ge S (2007) The puzzle of rice domestication. J Intergr Plant Biol 49:760–768

    Article  CAS  Google Scholar 

  • Second G (1982) Origin of the genetic diversity of cultivated rice (Oryza spp.): Study of the polymorphism scored at 40 isozyme loci. Jpn J Genet 57:25–57

    Article  Google Scholar 

  • Song Z, Li B, Chen J, Lu B-R (2005) Genetic diversity and conservation of common wild rice (Oryza rufipogon) in china. Plant Species Biol 20:83–92

    Google Scholar 

  • Sun X, Zhang Y, Yang S, Chen JQ, Hohn B, Tian D (2008) Insertion DNA promotes ectopic recombination during meiosis in Arabidopsis. Mol Biol Evol 25:2079–2083

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software, version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tang T, Lu J, Huang J, He J, McCouch SR, Shen Y et al (2006) Genomic variation in rice: genesis of highly polymorphic linkage blocks during domestication. PLoS Genet 2:el99

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-speciWc gap penalties, and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tian D, Wang Q, Zhang P, Araki H, Yang S, Kreitman M, Nagylaki T, Hudson T, Bergelson J, Chen JQ (2008) Single-nucleotide mutation rate increases close to indels in eukaryotes. Nature 455:105–108

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Ishii T, Lamy F, Brar D, Panaud O (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol Genet Genomics 272:504–511

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Sun C (1996) The origin and differentiation of Chinese cultivated rice. China Agricultural University Press, Beijing

    Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetic models without recombination. Theor Pop Biol 7:256–276

    Article  CAS  Google Scholar 

  • Weir BS (1996) Genetic data analysis II, 2nd edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Yang S, Feng Z, Zhang X, Jiang K, Jin X, Hang Y, Chen JQ, Tian D (2006) Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol Biol 62:181–193

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Gu T, Pan C, Feng Z, Ding J, Hang Y, Chen JQ, Tian D (2008) Genetic variation of NBS-LRR class resistance genes in rice lines. Theor Appl Genet 116:165–177

    Article  PubMed  CAS  Google Scholar 

  • Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in rice reveals significant expansion of divergent non-TIR NBS Genes. Mol Genet Genomics 271:402–415

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167:249–265

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 30570987 and 30870176) to D. T. or J.-Q. C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dacheng Tian or Sihai Yang.

Additional information

Yuanli Zhang and Jiao Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 229 kb)

(ppt 3489 kb)

(ppt 2911 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, J., Zhang, X. et al. Genetic Signature of Rice Domestication Shown by a Variety of Genes. J Mol Evol 68, 393–402 (2009). https://doi.org/10.1007/s00239-009-9217-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9217-6

Keywords

Navigation