Skip to main content
Log in

Positive Selection in Tick Saliva Proteins of the Salp15 Family

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

When taking their blood meal on the mammalian host, ticks transfer a multitude of different proteins from their saliva into the host. Some of these proteins are hijacked by pathogens for their own purposes. Borrelia burgdorferi, the Lyme disease agent, is critically dependent on the presence of the tick protein Salp15 when infecting the host. Similarly, Anaplasma phagocytophilum, which causes anaplasmosis, needs Salp16, a homologue of Salp15, to get transferred from the host into the tick. Here we analyzed whether adaptive evolution has shaped the Salp15 protein family. Using site-specific estimates of KA/KS ratios, we identified different positions within the Salp15 protein family which have undergone a phase of positive selection. Additionally, we analyzed the B. burgdorferi protein interacting with Salp15, OspC. Again, sites showing signs of positive selection were identified, although they are more likely a result of the antigenic features of OspC than of the influence of Salp15. The identification of probably functionally relevant sites in the Salp15 family might direct the detailed experimental analysis of their interaction with human and bacterial proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anguita J, Ramamoorthi N, Hovius JW, Das S, Thomas V, Persinski R, Conze D, Askenase PW, Rincon M, Kantor FS, Fikrig E (2002) Salp15, an Ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. Immunity 16:849–859

    Article  PubMed  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    PubMed  CAS  Google Scholar 

  • Das S, Banerjee G, DePonte K, Marcantonio N, Kantor FS, Fikrig E (2001) Salp25D, an Ixodes scapularis antioxidant, is 1 of 14 immunodominant antigens in engorged tick salivary glands. J Infect Dis 184:1056–1064

    Article  PubMed  CAS  Google Scholar 

  • Earnhart CG, Marconi RT (2007) OspC phylogenetic analyses support the feasibility of a broadly protective polyvalent chimeric Lyme disease vaccine. Clin Vaccine Immunol 14:628–634

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  Google Scholar 

  • Eicken C, Sharma V, Klabunde T, Owens RT, Pikas DS, Hook M, Sacchettini JC (2001) Crystal structure of Lyme disease antigen outer surface protein C from Borrelia burgdorferi. J Biol Chem 276:10010–10015

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Foley J, Nieto N (2007) Anaplasma phagocytophilum subverts tick salivary gland proteins. Trends Parasitol 23:3–5

    Article  PubMed  CAS  Google Scholar 

  • Garg R, Juncadella IJ, Ramamoorthi N, Ashish, Ananthanarayanan SK, Thomas V, Rincon M, Krueger JK, Fikrig E, Yengo CM, Anguita J (2006) Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, salp15. J Immunol 177:6579–6583

  • Gillespie RD, Mbow ML, Titus RG (2000) The immunomodulatory factors of bloodfeeding arthropod saliva. Parasite Immunol 22:319–331

    Article  PubMed  CAS  Google Scholar 

  • Hill CA, Wikel SK (2005) The Ixodes scapularis Genome Project: an opportunity for advancing tick research. Trends Parasitol 21:151–153

    Article  PubMed  CAS  Google Scholar 

  • Hovius JW, de Jong MA, den Dunnen J, Litjens M, Fikrig E, van der Poll T, Gringhuis SI, Geijtenbeek TB (2008) Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog 4:e31

    Article  PubMed  Google Scholar 

  • Motameni AR, Juncadella IJ, Ananthanarayanan SK, Hedrick MN, Huet-Hudson Y, Anguita J (2004) Delivery of the immunosuppressive antigen Salp15 to antigen-presenting cells by Salmonella enterica serovar Typhimurium aroA mutants. Infect Immun 72:3638–3642

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    PubMed  CAS  Google Scholar 

  • Ribeiro JM, Arca B, Lombardo F, Calvo E, Phan VM, Chandra PK, Wikel SK (2007) An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC Genomics 8:6

    Article  PubMed  Google Scholar 

  • Schuijt TJ, Hovius JW, van Burgel ND, Ramamoorthi N, Fikrig E, van Dam AP (2008) The tick salivary protein Salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates. Infect Immun 76:2888–2894

    Article  PubMed  CAS  Google Scholar 

  • Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–W612

    Article  PubMed  CAS  Google Scholar 

  • Swanson WJ, Nielsen R, Yang Q (2003) Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 20:18–20

    PubMed  CAS  Google Scholar 

  • Theisen M, Borre M, Mathiesen MJ, Mikkelsen B, Lebech AM, Hansen K (1995) Evolution of the Borrelia burgdorferi outer surface protein OspC. J Bacteriol 177:3036–3044

    PubMed  CAS  Google Scholar 

  • Trager W (1939) Acquired immunity to ticks. J Parasitol 25:57–81

    Article  Google Scholar 

  • Valenzuela JG, Charlab R, Mather TN, Ribeiro JM (2000) Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J Biol Chem 275:18717–18723

    Article  PubMed  CAS  Google Scholar 

  • Wong WS, Yang Z, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and applic ation to primate lysozyme evolution. Mol Biol Evol 15:568–573

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schultz.

Electronic supplementary material

Below is the link to the electronic supplementary material

Supplementary material 1 (DOC 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwalie, P.C., Schultz, J. Positive Selection in Tick Saliva Proteins of the Salp15 Family. J Mol Evol 68, 186–191 (2009). https://doi.org/10.1007/s00239-008-9194-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9194-1

Keywords

Navigation