Skip to main content

Advertisement

Log in

Short Homologous Sequences Are Strongly Associated with the Generation of Chimeric RNAs in Eukaryotes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Chimeric RNAs have been reported in varieties of organisms and are conventionally thought to be produced by trans-splicing of two or more distinct transcripts. Here, we conducted a large-scale search for chimeric RNAs in the budding yeast, fruit fly, mouse, and human. Thousands of chimeric transcripts were identified in these organisms except in yeast, in which five chimeric RNAs were observed. RT-PCR experiments for a sample of yeast and fly chimeric transcripts using specific primers show that about one-third of these chimeric RNAs can be reproduced. The results suggest that at least a considerable amount of chimeric RNAs is unlikely from aberrant transcription or splicing, and thus formation of chimeric RNAs is probably a widespread process and can greatly contribute to the complexity of the transcriptome and proteome of organisms. However, only a small fraction (<20%) of these chimeric RNAs has GU-AG at the junction sequences which fits the classical trans-splicing model. In contrast, we observed that about half of the chimeric RNAs have short homologous sequences (SHSs) at the junction sites of the source sequences. Our sequence mutation experiments in yeast showed that disruption of SHSs resulted in the disappearance of the corresponding chimeric RNAs, suggesting that SHSs are essential for generating this kind of chimeric RNA. In addition to the classical trans-splicing model, we propose a new model, the transcriptional slippage model, to explain the generation of those chimeric RNAs synthesized from templates with SHSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baranov P, Hammer A, Zhou J, Gesteland R, Atkins J (2005) Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol 6:R25

    Article  PubMed  Google Scholar 

  • Boue S, Letunic I, Bork P (2003) Alternative splicing and evolution. BioEssays 25:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Breen MA, Ashcroft SJH (1997) A truncated isoform of Ca2+/calmodulin-dependent protein kinase II expressed in human islets of Langerhans may result from trans-splicing. FEBS Lett 409:375–379

    Article  PubMed  CAS  Google Scholar 

  • Caudevilla C, Serra D, Miliar A, Codony C, Asins G, Bach M, Hegardt FG (1998) Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proc Natl Acad Sci USA 95:12185–12190

    Article  PubMed  CAS  Google Scholar 

  • Chapdelaine Y, Bonen L (1991) The wheat mitochondrial gene for subunit I of the NADH dehydrogenase complex: a trans-splicing model for this gene-in-pieces. Cell 65:465–472

    Article  PubMed  CAS  Google Scholar 

  • Chuang CH, Belmont AS (2006) Close encounters between active genes in the nucleus. Genome Biol 6:237

    Article  Google Scholar 

  • Dixon RJ, Eperon IC, Samani NJ (2007) Complementary intron sequence motifs associated with human exon repetition: a role for intragenic, inter-transcript interactions in gene expression. Bioinformatics 23:150–155

    Article  PubMed  CAS  Google Scholar 

  • Dorn R, Reuter G, Loewendorf A (2001) Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila. Proc Natl Acad Sci USA 98:9724–9729

    Article  PubMed  CAS  Google Scholar 

  • Fabre E, Dujon B, Richard G-F (2002) Transcription and nuclear transport of CAG/CTG trinucleotide repeats in yeast. Nucleic Acids Res 30:3540–3547

    Article  PubMed  CAS  Google Scholar 

  • Finta C, Zaphiropoulos PG (2000) The human CYP2C locus: a prototype for intergenic and exon repetition splicing events. Genomics 63:433–438

    Article  PubMed  CAS  Google Scholar 

  • Finta C, Zaphiropoulos PG (2002) Intergenic mRNA molecules resulting from trans-splicing. J Biol Chem 277:5882–5890

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald C, Sikora C, Lawson V, Dong K, Cheng M, Oko R, van der Hoorn FA (2006) Mammalian transcription in support of hybrid mRNA and protein synthesis in testis and lung. J Biol Chem 281:38172–38180

    Article  PubMed  CAS  Google Scholar 

  • Frantz SA, Thiara AS, Lodwick D, Ng LL, Eperon IC, Samani NJ (1999) Exon repetition in mRNA. Proc Natl Acad Sci USA 96:5400–5405

    Article  PubMed  CAS  Google Scholar 

  • Gabler M, Volkmar M, Weinlich S, Herbst A, Dobberthien P, Sklarss S, Fanti L, Pimpinelli S, Kress H, Reuter G, Dorn R (2005) Trans-splicing of the mod(mdg4) complex locus is conserved between the distantly related species Drosophila melanogaster and D. virilis. Genetics 169:723–736

    Article  CAS  Google Scholar 

  • Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, Emanuelsson O, Zhang ZD, Weissman S, Snyder M (2007) What is a gene, post-ENCODE? History and updated definition. Genome Res 17:669–681

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271:501–501

    Article  PubMed  CAS  Google Scholar 

  • Graveley BR (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17:100–107

    Article  CAS  Google Scholar 

  • Hirano M, Noda T (2004) Genomic organization of the mouse Msh4 gene producing bicistronic, chimeric and antisense mRNA. Gene 342:165–177

    Article  PubMed  CAS  Google Scholar 

  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi T, Aigaki T (2006) Alternative trans-splicing: a novel mode of pre-mRNA processing. Biol Cell 98:135–140

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi T, Giniger E, Aigaki T (2003) Alternative trans-splicing of constant and variable exons of a Drosophila axon guidance gene, lola. Genes Dev 17:2496–2501

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Iborra FJ, Manders EMM, Cook PR (1998) Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol Biol Cell 9:1523–1536

    PubMed  CAS  Google Scholar 

  • Joseph DR, Sullivan PM, Wang Y-M, Millhorn DE, Bayliss DM (1991) Complex structure and regulation of the ABP/SHBG gene. J Steroid Biochem Mol Biol 40:771–775

    Article  PubMed  CAS  Google Scholar 

  • Kück U, Choquet Y, Schneider M, Dron M, Bennoun P (1987) Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardtii: evidence for in vivo trans-splicing. EMBO J 6:2185–2195

    PubMed  Google Scholar 

  • Kawasaki T, Okumura S, Kishimoto N, Shimada H, Higo K, Ichikawa N (1999) RNA maturation of the rice SPK gene may involve trans-splicing. Plant J 18:625–632

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    PubMed  CAS  Google Scholar 

  • Koller B, Fromm H, Galun E, Edelman M (1987) Evidence for in vivo trans splicing of pre-mRNAs in tobacco chloroplasts. Cell 48:111–119

    Article  PubMed  CAS  Google Scholar 

  • Konarska MM, Padgett RA, Sharp PA (1985) Trans-splicing of mRNA precursors in vitro. Cell 42:165–171

    Article  PubMed  CAS  Google Scholar 

  • Leamon JH, Link DR, Egholm M, Rothberg JM (2006) Overview: methods and applications for droplet compartmentalization of biology. Nat Methods 3:541–543

    Article  PubMed  CAS  Google Scholar 

  • Li B-L, Li X-L, Duan Z-J, Lee O, Lin S, Ma Z-M, Chang CCY, Yang X-Y, Park JP, Mohandas TK, Noll W, Chan L, Chang T-Y (1999) Human acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT–1 mRNA is produced from two different chromosomes. J Biol Chem 274:11060–11071

    Article  PubMed  CAS  Google Scholar 

  • Li X, Liang J, Yu H, Su B, Xiao C, Shang Y, Wang W (2007) Functional consequences of new exon acquisition in mammalian chromodomain Y-like (CDYL) genes. Trends Genet 23:427–431

    Article  PubMed  CAS  Google Scholar 

  • Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, Cherry AM, Hoffman AR (2006) CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312:269–272

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Tasic B (2002) Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418:236–243

    Article  PubMed  CAS  Google Scholar 

  • Mayer MG, Floeter-Winter LM (2005) Pre-mRNA trans-splicing: from kinetoplastids to mammals, an easy language for life diversity. Mem Inst Oswaldo Cruz 100:501–513

    Article  PubMed  CAS  Google Scholar 

  • Mongelard F, Labrador M, Baxter EM, Gerasimova TI, Corces VG (2002) Trans-splicing as a novel mechanism to explain interallelic complementation in Drosophila. Genetics 160:1481–1487

    PubMed  CAS  Google Scholar 

  • Nilsen TW (2001) Evolutionary origin of SL-addition trans-splicing: still an enigma. Trends Genet 17:678–680

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nature Genet 36:1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, Navik JA, Walden KKO, Honegger H-W (2007) The bursicon gene in mosquitoes: an unusual example of mRNA trans-splicing. Genetics 176:1351–1353

    Article  PubMed  CAS  Google Scholar 

  • Shimizu A, Nussenzweig MC, Mizuta T-R, Leder P, Honjo T (1989) Immunoglobulin double-isotype expression by trans-mRNA in a human immunoglobulin transgenic mouse. Proc Natl Acad Sci USA 86:8020–8023

    Article  PubMed  CAS  Google Scholar 

  • Shimizu A, Nussenzweig MC, Han H, Sanchez M, Honjo T (1991) Trans-splicing as a possible molecular mechanism for the multiple isotype expression of the immunoglobulin gene. J Exp Med 173:1385–1393

    Article  PubMed  CAS  Google Scholar 

  • Solnick D (1985) Trans-splicing of mRNA precursors. Cell 42:157–164

    Article  PubMed  CAS  Google Scholar 

  • Sullivan PM, Petrusz P, Szpirer C, Joseph DR (1991) Alternative processing of androgen-binding protein RNA transcripts in fetal rat liver. Identification of a transcript formed by trans splicing. J Biol Chem 266:143–154

    CAS  Google Scholar 

  • Takahara T, S-i Kanazu, Yanagisawa S, Akanuma H (2000) Heterogeneous sp1 mRNAs in human HepG2 cells Include a product of homotypic trans-splicing. J Biol Chem 275:38067–38072

    Article  PubMed  CAS  Google Scholar 

  • Tasic B, Nabholz CE, Baldwin KK, Kim Y, Rueckert EH, Ribich SA, Cramer P, Wu Q, Axel R, Maniatis T (2002) Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing. Mol Cell 10:21–33

    Article  PubMed  CAS  Google Scholar 

  • Unneberg P, Claverie JM (2007) Tentative mapping of transcription-induced interchromosomal interaction using chimeric EST and mRNA data. PLoS ONE 2:e254

    Article  PubMed  Google Scholar 

  • van den Hurk WH, Willems HJJ, Bloemen M, Martens GJM (2001) Novel frameshift mutations near short simple repeats. J Biol Chem 276:11496–11498

    Article  Google Scholar 

  • van Leeuwen FW, de Kleijn DP et al (1998) Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279:242–247

    Article  PubMed  Google Scholar 

  • Vellard M, Sureau A, Soret J, Martinerie C, Perbal B (1992) A potential splicing factor is encoded by the opposite strand of the trans-spliced c-myb exon. Proc Natl Acad Sci USA 89:2511–2515

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF (1990) Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res 18:3529–3535

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Zheng H, Yang S, Yu H, Li J, Jiang H, Su J, Yang L, Zhang J, McDermott J, Samudrala R, Wang J, Yang H, Yu J, Kristiansen K, Wong GK-S, Wang J (2005) Origin and evolution of new exons in rodents. Genome Res 15:1258–1264

    Article  PubMed  CAS  Google Scholar 

  • Zaphiropoulos PG (1999) RNA molecules containing exons originating from different members of the cytochrome P450 2C gene subfamily (CYP2C) in human epidermis and liver. Nucleic Acids Res 27:2585–2590

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Xie Y, Martignetti JA, Yeo TT, Massa SM, Longo FM (2003) A candidate chimeric mammalian mRNA transcript Is derived from distinct chromosomes and Is associated with nonconsensus splice junction motifs. DNA Cell Biol 22:303–315

    Article  PubMed  Google Scholar 

  • Zhao Y, H-s Yu, Lu H, Yao K, H-h Cheng, R-j Zhou (2006) Interchromosomal trans-splicing of DMRT1 gene on chicken chromosome Z. Zool Res 27:175–180

    Google Scholar 

Download references

Acknowledgments

We thank Chris Tyler-Smith, Zhenglong Gu, Yali Xue, and Paul Lemetti’s comments on and English editing of the manuscript. This work was supported by a CAS-Max Planck Society Fellowship, a NSFC key grant (No. 30430400), and a 973 Program grant (No. 2007CB815703-5) to W.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Wang.

Additional information

X. Li and L. Zhao contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zhao, L., Jiang, H. et al. Short Homologous Sequences Are Strongly Associated with the Generation of Chimeric RNAs in Eukaryotes. J Mol Evol 68, 56–65 (2009). https://doi.org/10.1007/s00239-008-9187-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9187-0

Keywords

Navigation