Skip to main content
Log in

Tracing Plant Mitochondrial DNA Evolution: Rearrangements of the Ancient Mitochondrial Gene Cluster trnA-trnT-nad7 in Liverwort Phylogeny

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Whereas frequent recombination characterizes flowering plant mitochondrial genomes, some mitochondrial gene arrangements may, in contrast, be conserved between streptophyte algae and early land plant clades (bryophytes). Here we explore the evolutionary fate of the mitochondrial gene arrangement trnA-trnT-nad7, which is conserved among the alga Chara, the moss Physcomitrella, and the liverwort Marchantia, although trnT is inverted in orientation in the latter. Surprisingly, we now find that the Chara-type gene arrangement is generally conserved in mosses, but that trnT is lacking between trnA and nad7 in all simple-thalloid and leafy (jungermanniid) liverworts. The ancient gene continuity trnA-trnT-nad7 is, however, conserved in Blasia, representing the sister lineage to all other complex-thalloid (marchantiid) liverworts. The recombinogenic insertion of short sequence stretches, including nad5 and rps7 pseudogene fragments copied from elsewhere in the liverwort mtDNA, likely mediated a subsequent inversion of trnT and flanking sequences in a basal grade of marchantiid liverworts, which was then followed by an independent secondary loss of trnT in derived marchantiid taxa later in evolution. In contrast to the previously observed extreme degree of coding sequence conservation and the assumed absence of active recombination in Marchantia mtDNA, this now reveals a surprisingly dynamic evolution of marchantiid liverwort mitochondrial genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bp:

Base pair

mtDNA:

Mitochondrial DNA

References

  • Arrieta-Montiel M, Lyznik A, Woloszynska M, Janska H, Tohme J, Mackenzie S (2001) Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics 158:851–864

    PubMed  CAS  Google Scholar 

  • Beckert S, Steinhauser S, Muhle H, Knoop V (1999) A molecular phylogeny of bryophytes based on nucleotide sequences of the mitochondrial nad5 gene. Plant Syst Evol 218:179–192

    Article  CAS  Google Scholar 

  • Crandall-Stotler B, Forrest LL, Stotler RE (2005) Evolutionary trends in the simple thalloid liverworts (Marchantiophyta, Jungermanniopsida subclass Metzgeriidae). Taxon 54:299–316

    Google Scholar 

  • Davis EC (2004) A molecular phylogeny of leafy liverworts (Jungermanniidae: Marchantiophyta). In: Goffinet B, Hollowell V, Magill R (eds) Molecular systematics of bryophytes. Missouri Botanical Garden Press, St. Louis, pp 61–86

    Google Scholar 

  • Dombrovska E, Qiu YL (2004) Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Mol Phylogenet Evol 32:246–263

    Article  PubMed  CAS  Google Scholar 

  • Forrest LL, Crandall-Stotler BJ (2004) A phylogeny of the simple thalloid liverworts (Jungermanniopsida, Metzgeriidae) as inferred from five chloroplast genes. In: Goffinet B, Hollowell V, Magill R (eds) Molecular systematics of bryophytes. Missouri Botanical Garden Press, St. Louis, pp 119–140

    Google Scholar 

  • Forrest LL, Crandall-Stotler BJ (2005) Progress towards a robust phylogeny for the liverworts, with particular focus on the simple thalloids. J Hattori Bot Lab 97:127–159

    Google Scholar 

  • Forrest LL, Davis EC, Long DG, Crandall-Stotler BJ, Clark A, Hollingsworth ML (2006) Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses. Bryologist 109:303–334

    Article  CAS  Google Scholar 

  • Goffinet B, Wickett NJ, Shaw AJ, Cox CJ (2005) Phylogenetic significance of the rpoA loss in the chloroplast genome of mosses. Taxon 54:353–360

    Google Scholar 

  • Goffinet B, Wickett NJ, Werner O, Ros RM, Shaw AJ, Cox CJ (2007) Distribution and phylogenetic significance of the 71-kb inversion in the plastid genome in Funariidae (Bryophyta). Ann Bot (Lond) 99:747–753

    Article  CAS  Google Scholar 

  • Groth-Malonek M, Rein T, Wilson R, Groth H, Heinrichs J, Knoop V (2007a) Different fates of two mitochondrial gene spacers in early land plant evolution. Int J Plant Sci 168:709–717

    Article  CAS  Google Scholar 

  • Groth-Malonek M, Wahrmund U, Polsakiewicz M, Knoop V (2007b) Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Mol Biol Evol 24:1068–1074

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heinrichs J, Gradstein SR, Wilson R, Schneider H (2005) Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene rbcL. Crypto Bryol 26:215–233

    Google Scholar 

  • Jansen RK, Palmer JD (1987) A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc Natl Acad Sci USA 84:5818–5822

    Article  PubMed  CAS  Google Scholar 

  • Knoop V (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46:123–139

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Knoop V, Fukuzawa H, Brennicke A, Ohyama K (1997) Interorganellar gene transfer in bryophytes: the functional nad7 gene is nuclear encoded in Marchantia polymorpha. Mol Gen Genet 256:589–592

    PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinf 5:150–163

    Article  CAS  Google Scholar 

  • Mackenzie S, McIntosh L (1999) Higher plant mitochondria. Plant Cell 11:571–585

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie S, He S, Lyznik A (1994) The elusive plant mitochondrion as a genetic system. Plant Physiol 105:775–780

    PubMed  CAS  Google Scholar 

  • Moeykens CA, Mackenzie SA, Shoemaker RC (1995) Mitochondrial genome diversity in soybean—repeats and rearrangements. Plant Mol Biol 29:245–254

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Kohchi T, Ohyama K (1992a) Mitochondrial DNA of Marchantia polymorpha as a single circular form with no incorporation of foreign DNA. Biosci Biotechnol Biochem 56:132–135

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992b) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata M, Futo S, Tsunewaki K (2005) Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res 33:6235–6250

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (1998) The structure of mitochondrial DNA from the liverwort, Marchantia polymorpha. J Mol Biol 276:745–758

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J Mol Biol 310:549–562

    Article  PubMed  CAS  Google Scholar 

  • Pruchner D, Beckert S, Muhle H, Knoop V (2002) Divergent intron conservation in the mitochondrial nad2 gene: signatures for the three bryophyte classes (mosses, liverworts, and hornworts) and the lycophytes. J Mol Evol 55:265–271

    Article  PubMed  CAS  Google Scholar 

  • Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Cho YR, Cox JC, Palmer JD (1998) The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394:671–674

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516

    Article  PubMed  CAS  Google Scholar 

  • Raubeson LA, Jansen RK (1992a) A rare chloroplast DNA structural mutation is shared by all conifers. Biochem Syst Ecol 20:17–24

    Article  CAS  Google Scholar 

  • Raubeson LA, Jansen RK (1992b) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V (1999) Plant mitochondrial RNA editing: extreme in hornworts and dividing the liverworts? J Mol Evol 48:303–312

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genom 272:603–615

    Article  CAS  Google Scholar 

  • Takemura M, Nozato N, Oda K, Kobayashi Y, Fukuzawa H, Ohyama K (1995) Active transcription of the pseudogene for subunit-7 of the Nadh dehydrogenase in Marchantia-Polymorpha mitochondria. Mol Gen Genet 247:565–570

    Article  PubMed  CAS  Google Scholar 

  • Terasawa K, Odahara M, Kabeya Y, Kikugawa T, Sekine Y, Fujiwara M, Sato N (2006) The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Mol Biol Evol 24:699–709

    Article  PubMed  CAS  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2003) The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15:1888–1903

    Article  PubMed  CAS  Google Scholar 

  • Ullrich H, Lättig K, Brennicke A, Knoop V (1997) Mitochondrial DNA variations and nuclear RFLPs reflect different genetic similarities among 23 Arabidopsis thaliana ecotypes. Plant Mol Biol 33:37–45

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful for financial support through the Deutsche Forschungsgemeinschaft DFG and to colleagues Jochen Heinrichs (Göttingen, Germany), Jan-Peter Frahm (Bonn, Germany), Hermann Muhle (Ulm, Germany), Yin-Long Qiu (Ann Arbor, MI, USA), Barbara Crandall-Stotler (Carbondale, IL, USA), and Laura Lowe-Forrest (Edinburgh, UK) for help in obtaining certain plant materials and/or DNA samples, respectively. U.W. would like to thank Michael Volkmar for constant support and ad hoc advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Knoop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahrmund, U., Groth-Malonek, M. & Knoop, V. Tracing Plant Mitochondrial DNA Evolution: Rearrangements of the Ancient Mitochondrial Gene Cluster trnA-trnT-nad7 in Liverwort Phylogeny. J Mol Evol 66, 621–629 (2008). https://doi.org/10.1007/s00239-008-9114-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9114-4

Keywords

Navigation