Skip to main content

Advertisement

Log in

Comparative Analysis of the glg Operons of Pectobacterium chrysanthemi PY35 and Other Prokaryotes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

A chromosomal region of Pectobacterium chrysanthemi PY35 that contains of genes for glycogen synthesis was isolated from a cosmid library. The operon consists of glycogen branching enzyme (glgB), glycogen debranching enzyme (glgX), ADP-glucose pyrophosphorylase (glgC), glycogen synthase (glgA), and glycogen phosphorylase (glgP) genes. Gene organization is similar to that of Escherichia coli. The purified ADP-glucose pyrophosphorylase (GlgC) was activated by fructose 1,6-bisphosphate and inhibited by AMP. The constructed glgX::Ω mutant failed to integrate into the chromosome of P. chrysanthemi by marker exchange. Phylogenetic analysis based on the 16S rDNA and the amino acid sequence of Glg enzymes showed correlation with other bacteria. γ-Proteobacteria have the glgX gene instead of the bacilli glgD gene in the glg operon. The possible evolutionary implications of the results among the prokaryotes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso-Casajús N, Dauvillée D, Viale AM, Muñoz FJ, Baroja-Fernández E, Morán-Zorzano MT, Eydallin G, Ball S, Pozueta-Romero J (2006) Glycogen phoshporylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J Bacteriol 188:5266–5272

    Article  PubMed  Google Scholar 

  • Bao Y, Yang BZ Jr, Dawson TL, Chen YT (1997) Isolation and nucleotide sequence of human liver glycogen debranching enzyme mRNA: identification of multiple tissue-specific isoforms. Gene 197:389–398

    Article  PubMed  CAS  Google Scholar 

  • Battista JR, Earl AM (2004) Mutagenesis and DNA repair. In: Miller RV, Day MJ (eds) Microbial evolution: gene establishment, survival, and exchange. ASM Press, Washington, DC, pp 3–20

    Google Scholar 

  • Chen GS, Segel IH (1968) Escherchia coli polyglucose phosphorylase. Arch Biochem Biophys 127:164–174

    Article  PubMed  CAS  Google Scholar 

  • Coppin A, Varré JS, Lienard L, Dauvillée D, Guérardel Y, Soyer-Gobillard MO, Buléon A, Tomavo S (2005) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol 60:257–267

    Article  PubMed  CAS  Google Scholar 

  • Eidels L, Preiss J (1970) Carbohydrate metabolism in Rhodopseudomonas capsulata: enzyme titers, glucose metabolism, and polyglucose polymer synthesis. Arch Biochem Biophys 140:75–89

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Tagaya M, Inouye M, Preiss J, Fukui T (1990) Identification of Lys15 at the active site of Escherichia coli glycogen synthase. Conservation of a Lys-X-Gly-Gly in the bacterial and mammalian enzymes. J Biol Chem 265:2086–2090

    PubMed  CAS  Google Scholar 

  • Furukawa K, Tagaya M, Tanizawa K, Fukui T (1994) Identification of Lys277 at the active site of Escherichia coli glycogen synthase. Application of affinity labeling combined with site-directed mutagenesis. J Biol Chem 269:868–871

    PubMed  CAS  Google Scholar 

  • Greene TW, Chantler SE, Kahn ML, Barry GF, Preiss J, Okita TW (1996) Mutagenesis of the potato ADP-glucose pyrophosphorylase and characterization of an allosteric mutant defective in 3-phosphoglycerate activation. Proc Natl Acad Sci USA 93:1509–1513

    Article  PubMed  CAS  Google Scholar 

  • Igarashi RY, Meyer CR (2000) Cloning and sequencing of glycogen metabolism genes from Rhodobacter sphaeroides 2.4.1. Expression and characterization of recombinant ADP-glucose pyrophosphorylase. Arch Biochem Biophys 376:47–58

    Article  PubMed  CAS  Google Scholar 

  • Kiel JA, Boels JM, Ten Berge AM, Venema G (1993) Two putative insertion sequences flank a truncated glycogen branching enzyme gene in the thermophile Bacillus stearothermophilus CU21. DNA Seq 4:1–9

    Article  PubMed  CAS  Google Scholar 

  • Kiel JA, Boels JM, Beldman G, Venema G (1994) Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol Microbiol 11:203–218

    Article  PubMed  CAS  Google Scholar 

  • Kim MK, Park SR, Cho SJ, Lim WJ, Ryu SK, An CR, Hong SY, Park YW, Kahng GG, Kim JH, Kim H, Yun HD (2002) The effect of the disrupted yhjQ on cellular morphology and cell growth in Escherichia coli. Appl Microbiol Biotechnol 60:134–138

    Article  PubMed  CAS  Google Scholar 

  • Krisman CR (1962) A method for the colorimetric estimation of glycogen with iodine. Anal Biochem 4:17–23

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acids techniques in bacterial systematics. John Wiley and Sons, Chicester, UK, pp 115–148

    Google Scholar 

  • Lim WJ, Park SR, Cho SJ, Kim MK, Ryu SK, Hong SY, Seo WT, Kim H, Yun HD (2001) Cloning and characterization of an intracellular isoamylase gene from Pectobacterium chrysanthemi PY35. Biochem Biophys Res Commun 287:348–354

    Article  PubMed  CAS  Google Scholar 

  • Lim WJ, Park SR, Kim MK, An CL, Yun HJ, Hong SY, Kim EJ, Shin EC, Lee SW, Lim YP, Yun HD (2003) Cloning and characterization of the glycogen branching enzyme gene existing in tandem with the glycogen debranching enzyme from Pectobacterium chrysanthemi PY35. Biochem Biophys Res Commun 300:93–101

    Article  PubMed  CAS  Google Scholar 

  • Liu MY, Yang H, Romeo T (1995) The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. J Bacteriol 177:2663–2672

    PubMed  CAS  Google Scholar 

  • Loewen PC, Hengge-Aronis R (1994) The role of the sigma factor ss (katF) in bacterial global regulation. Annu Rev Microbiol 48:53–80

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Kanai T, Takata H, Kuriki T, Imanaka T (2006) A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 188:5915–5924

    Article  PubMed  CAS  Google Scholar 

  • Nagano Y, Matsuno R, Sasaki Y (1991) An essential gene of Eshcherichia coli that has sequence similarity to a chloroplast of unknown function. Mol Gen Genet 228:62–64

    Article  PubMed  CAS  Google Scholar 

  • Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123

    PubMed  CAS  Google Scholar 

  • Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419–458

    Article  PubMed  CAS  Google Scholar 

  • Preiss J (1993) Biosynthesis of starch: ADP-glucose pyrophosphorylase, the regulatory enzymes of starch synthesis: structure-function relationship. Denpun Kagaku 40:117–131

    CAS  Google Scholar 

  • Preiss J (1996) Regulation of glycogen synthesis. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 1015–1024

    Google Scholar 

  • Preiss J, Romeo T (1989) Physiology, biochemistry and genetics of bacterial glycogen synthesis. Adv Microb Physiol 30:183–238

    Article  PubMed  CAS  Google Scholar 

  • Preiss J, Romeo T (1994) Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol 47:299–328

    Article  PubMed  CAS  Google Scholar 

  • Roeder DI, Collmer A (1985) Marker-exchange mutagenesis of a pectate lyase isosome gene in Erwinia chrysanthemi. J Bacteriol 164:51–56

    PubMed  CAS  Google Scholar 

  • Romeo T, Kumar A, Preiss J (1988) Analysis of the Escherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes. Gene 79:363–376

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Takata H, Takaha T, Okada S, Takagi M, Imanaka T (1996a) Cyclization reaction catalyzed by branching enzyme. J Bacteriol 178:1600–1606

    Google Scholar 

  • Takata H, Takaha T, Okada S, Hizukuri S, Takagi M, Imanaka T (1996b) Cyclic glucan produced by the action of branching enzyme. J Appl Glycosci 43:257–264

    Google Scholar 

  • Takata H, Takaha T, Okada S, Hizukuri S, Takagi M, Imanaka T (1996c) Structure of the cyclic glucan produced from amylopectin by Bacillus stearothermophilus branching enzyme. Carbohydr Res 295:91–101

  • Takata H, Takaha T, Okada S, Takagi M, Imanaka T (1997) Characterization of a gene cluster for glycogen biosynthesis and a heterotetrameric ADP-glucose pyrophosphorylase from Bacillus stearothermophilus. J Bacteriol 179:4689–4698

    PubMed  CAS  Google Scholar 

  • Ugalde JE, Lepek V, Uttaro A, Estrella J, Iglesias A, Ugaldei RA (1998) Gene organization and transcription analysis of the Agrobacterium tumefaciens glycogen (glg) operon: two transcripts for the single phosphoglucomutase gene. J Bacteriol 180:6557–6564

    PubMed  CAS  Google Scholar 

  • Yang H, Liu MY, Romeo T (1996) Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the csrA gene product. J Bacteriol 178:1012–1017

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the KRF (2005-042-F00013), Korea. R. K. Math was supported by a scholarship from the BK21 Program, Ministry of Education and Human Resources Development, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Dae Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, K.M., Lim, W.J., Math, R.K. et al. Comparative Analysis of the glg Operons of Pectobacterium chrysanthemi PY35 and Other Prokaryotes. J Mol Evol 67, 1–12 (2008). https://doi.org/10.1007/s00239-008-9103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9103-7

Keywords

Navigation