Skip to main content

Advertisement

Log in

Rapid Evolution by Positive Darwinian Selection in T-Cell Antigen CD4 in Primates

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

CD4, an integral membrane glycoprotein, plays a critical role in the immune response and in the life cycle of simian and human immunodeficiency virus (SIV and HIV). Pairwise comparisons of orthologous human and mouse genes show that CD4 is evolving much faster than the majority of mammalian genes. The acceleration is too great to be attributed to a simple relaxation of the action of purifying selection alone. Here we show that the selective pressure acting on CD4 is highly variable between regions in the protein and identify codon sites under strong positive selection. We reconstruct the coding sequences for ancestral primate CD4s and model tertiary structures of all ancestral and extant sequences. Structural mapping of positively selected sites shows they distribute on the surface of the D1 domain of CD4, where the exogenous SIV gp120 protein binds. Moreover, structural models of the ancestral sequences show substantially larger variation in the interfacial electrostatic charge on CD4 and in the surface complementary between CD4 and gp120 in CD4 lineages from primates with natural SIV infections than those without. Thus, positive selection on CD4 among primates may reflect forces driven by SIV infection and could provide a link between changes in sequence and structure of CD4 during evolution and the interaction with the immunodeficiency virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592

    PubMed  CAS  Google Scholar 

  • Anisimova M, Bielawski JP, Yang Z (2002) Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol Biol Evol 19:950–958

    PubMed  CAS  Google Scholar 

  • Ansari-Lari MA, Oeltjen JC, Schwartz S, Zhang Z, Muzny DM, Lu J, Gorrell JH, Chinault AC, Belmont JW, Miller W, Gibbs RA (1998) Comparative sequence analysis of a gene-rich cluster at human chromosome 12p13 and its syntenic region in mouse chromosome 6. Genome Res 8:29–40

    PubMed  CAS  Google Scholar 

  • Brady RL, Dodson EJ, Dodson GG, Lange G, Davis SJ, Williams AF, Barclay AN (1993) Crystal structure of domains 3 and 4 of rat CD4: relation to the NH2-terminal domains. Science 260:979–983

    Article  PubMed  CAS  Google Scholar 

  • Browne WJ, North AC, Phillips DC, Brew K, Vanaman TC, Hill RL (1969) A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen’s egg-white lysozyme. J Mol Biol 42:65–86

    Article  PubMed  CAS  Google Scholar 

  • Bush RM, Fitch WM, Bender CA, Cox NJ (1999) Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol 16:1457–1465

    PubMed  CAS  Google Scholar 

  • Collaborative Computational Project (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  • Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Ikeo K, Gojobori T (1996) Large-scale search for genes on which positive selection may operate. Mol Biol Evol 13:685–690

    PubMed  CAS  Google Scholar 

  • Fitch WM, Bush RM, Bender CA, Cox NJ (1997) Long term trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci USA 94:7712–7718

    Article  PubMed  CAS  Google Scholar 

  • Gilson MK, Honig B (1988) Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins 4:7–18

    Article  PubMed  CAS  Google Scholar 

  • Greer J (1990) Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins 7:317–334

    Article  PubMed  CAS  Google Scholar 

  • Hanna Z, Simard C, Laperriere A, Jolicoeur P (1994) Specific expression of the human CD4 gene in mature CD4+ CD8- and immature CD4+ CD8+ T cells and in macrophages of transgenic mice. Mol Cell Biol 14:1084–1094

    PubMed  CAS  Google Scholar 

  • Heeney J, Jonker R, Koornstra W, Dubbes R, Niphuis H, Di Rienzo AM, Gougeon ML, Montagnier L (1993) The resistance of HIV-infected chimpanzees to progression to AIDS correlates with absence of HIV-related T-cell dysfunction. J Med Primatol 22:194–200

    PubMed  CAS  Google Scholar 

  • Hughes AL (1997) Rapid evolution of immunoglobulin superfamily C2 domains expressed in immune system cells. Mol Biol Evol 14:1–5

    PubMed  CAS  Google Scholar 

  • Jolly C, Phillips-Conroy JE, Turner TR, Broussard S, Allan JS (1996) SIVagm incidence over two decades in a natural population of Ethiopian grivet monkeys (Cercopithecus aethiops aethiops). J Med Primatol 25:78–83

    Google Scholar 

  • Kraulis PJ (1991) MOLSCRIPT: Aa program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  • Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein interfaces. J Mol Biol 234:946–950

    Article  PubMed  CAS  Google Scholar 

  • Marrack P, Endres R, Shimonkevitz R, Zlotnik A, Dialynas D, Fitch F, Kappler J (1983) The major histocompatibility complex-restricted antigen receptor on T cells. II. Role of the L3T4 product. J Exp Med 158:1077–1091

    Article  PubMed  CAS  Google Scholar 

  • Massingham T, Goldman N (2005) Detecting amino acid sites under positive selection and purifying selection. Genetics 169:1753–1762

    Article  PubMed  CAS  Google Scholar 

  • Nicholls A, Sharp KA, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11:281–296

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    PubMed  CAS  Google Scholar 

  • Purvis A (1995) A composite estimate of primate phylogeny. Philos Trans R Soc Lond B Biol Sci 348:405–421

    Article  PubMed  CAS  Google Scholar 

  • Reinherz EL, Schlossman SF (1980) The differentiation and function of human T lymphocytes. Cell 19:821–827

    Article  PubMed  CAS  Google Scholar 

  • Rey-Cuille MA, Berthier JL, Bomsel-Demontoy MC, Chaduc Y, Montagnier L, Hovanessian AG, Chakrabarti LA (1998) Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J Virol 72:3872–3886

    PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Ryu SE, Kwong PD, Truneh A, Porter TG, Arthos J, Rosenberg M, Dai XP, Xuong NH, Axel R, Sweet RW et al (1990) Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature 348:419–426

    Article  PubMed  CAS  Google Scholar 

  • Sawyer SL, Emerman M, Malik HS (2004) Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2:E275

    Article  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phy Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  • Sharp PM, Bailes E, Gao F, Beer BE, Hirsch VM, Hahn BH (2000) Origins and evolution of AIDS viruses: estimating the time-scale. Biochem Soc Trans 28:275–282

    PubMed  CAS  Google Scholar 

  • Silvestri G, Sodora DL, Koup RA, Paiardini M, O’Neil SP, McClure HM, Staprans SI, Feinberg MB (2003) Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18:441–452

    Article  PubMed  CAS  Google Scholar 

  • Swanson WJ, Clark AG, Waldrip-Dail HM, Wolfner MF, Aquadro CF (2001) Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc Natl Acad Sci USA 98:7375–7379

    Article  PubMed  CAS  Google Scholar 

  • Swanson WJ, Nielsen R, Yang Q (2003) Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 20:18–20

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Yan YW, Garrett TP, Liu JH, Rodgers DW, Garlick RL, Tarr GE, Husain Y, Reinherz EL, Harrison SC (1990) Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 348:411–418

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Meijers R, Xiong Y, Liu JH, Sakihama T, Zhang R, Joachimiak A, Reinherz EL (2001) Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc Natl Acad Sci USA 98:10799–10804

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Kwong PD, Hendrickson WA (1997) Dimeric association and segmental variability in the structure of human CD4. Nature 387:527–530

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Swanson WJ (2002) Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 19:49–57

    PubMed  Google Scholar 

  • Yang Z, Kumar S, Nei M (1995) A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141:1641–1650

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH/NLM grant T15 LM07056. Additional funding was provided by a grant from NIH/NLM (1K99LM009770-01) to Z.D.Z. and grants from NIH/NHGRI to G.W. and M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Gerstein.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.D., Weinstock, G. & Gerstein, M. Rapid Evolution by Positive Darwinian Selection in T-Cell Antigen CD4 in Primates. J Mol Evol 66, 446–456 (2008). https://doi.org/10.1007/s00239-008-9097-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9097-1

Keywords

Navigation