Skip to main content
Log in

Multilevel Control of Organelle DNA Sequence Length in Plants

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We have compared the length of noncoding organelle DNA spacers in a broad sample of plant species characterized by different life history traits to test hypotheses regarding the nature of the mechanisms driving changes in their size. We first demonstrate that the spacers do not evolve at random in size but have experienced directional evolutionary trends during plant diversification. We then study the relationships between spacer lengths and other molecular features and various species attributes by taking into account population genetic processes acting within cell lineages. Comparative techniques are used to test these relationships while controlling for species phylogenetic relatedness. The results indicate that spacer length depends on mode of organelle transmission, on population genetic structure, on nucleotide content, on rates of molecular evolution, and on life history traits, in conformity with predictions based on a model of intracellular competition among replicating organelle genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol Ecol Res 1:895–909

    Google Scholar 

  • Ackerly DD (2000) Taxon sampling, correlated evolution, and independent contrasts. Evolution 54:1480–1492

    PubMed  CAS  Google Scholar 

  • Albach DC, Soltis DE, Soltis PS, Olmstead RG (2001) Phylogenetic analysis of Asterids based on sequences of four genes. Ann Mo Bot Gard 88:163–212

    Article  Google Scholar 

  • Andersson SGE, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6:263–268

    Article  PubMed  CAS  Google Scholar 

  • Ballard JWO (2000) Comparative genomics of mitochondrial DNA in Drosophila simulans. J Mol Evol 51:64–75

    PubMed  CAS  Google Scholar 

  • Birky CWJ (1983) Relaxed cellular controls and organelle heredity. Science 222:468–475

    Article  PubMed  Google Scholar 

  • Birky CW Jr (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338

    Article  PubMed  CAS  Google Scholar 

  • Bleiweiss R (1998) Slow rate of molecular evolution in high-elevation hummingbirds. Proc Natl Acad Sci USA 95:612–616

    Article  PubMed  CAS  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Bruneau A, Forest F, Herendeen PS, Klitgaard BB, Lewis GP (2001) Phylogenetic relationships in the Caesalpinioideae (Leguminosae) as inferred from chloroplast trnL intron sequences. Syst Bot 26:487–514

    Google Scholar 

  • Cabin RJ, Mitchell RJ (2000) To Bonferroni or not to Bonferroni: when and how are the questions. ESA Bull 81:246–248

    Google Scholar 

  • Canbäck B, Tamas I, Andersson SGE (2004) A phylogenomic study of endosymbiotic bacteria. Mol Biol Evol 21:1110–1122

    Article  PubMed  Google Scholar 

  • Chat J, Decroocq S, Decroocq V, Petit RJ (2002) A case of chloroplast heteroplasmy in kiwifruit (Actinidia deliciosa) that is not transmitted during sexual reproduction. J Hered 93:293–300

    Article  PubMed  CAS  Google Scholar 

  • Cortopassi GA, Shibatan D, Soong N-W, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89:7370–7374

    Article  PubMed  CAS  Google Scholar 

  • Cuénoud P, Savolainen V, Chatrou L, Powell M, Grayer R, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK sequences. Am J Bot 89:132–144

    Article  Google Scholar 

  • De Las Rivas J, Lozano JJ, Ortiz AR (2002) Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res 12:567–83

    Article  PubMed  Google Scholar 

  • Duminil J, Pemonge MH, Petit RJ (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes 2:428–430

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    Article  PubMed  CAS  Google Scholar 

  • Grivet D, Heinze B, Vendramin GG, Petit RJ (2001) Genome walking with consensus primers: application to the large single copy region of chloroplast DNA. Mol Ecol Notes 1:345–349

    Article  CAS  Google Scholar 

  • Gustafsson MHG, Bittrich V, Stevens PF (2002) Phylogeny of Clusiaceae based on rbcL sequences. Int J Plant Sci 163:1045–1054

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harris SA, Ingram R (1991) Chloroplast DNA and biosystematics: the effects of intraspecific diversity and plastid transmission. Taxon 40:393–412

    Article  Google Scholar 

  • Hartley JL, Donelson JE (1980) Nucleotide sequence of the yeast plasmid. Nature 286:860–865

    Article  PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Ihaka A, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • Johnson KP, Seger J (2001) Elevated rates of nonsynonymous substitution in island birds. Mol Biol Evol 18:874–881

    PubMed  CAS  Google Scholar 

  • Kajita T, Ohashi H, Tateishi Y (2001) rbcL and legume phylogeny, with particular reference to Phaseoleae, Milletieae, and Allies. Syst Bot 26:515–536

    Google Scholar 

  • Kay KM, Whittall JB, Hodges SA (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol Biol 6:36

    Article  PubMed  Google Scholar 

  • Komaki K, Ishikawa H (1999) Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J Mol Evol 48:717–722

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Kusumi J, Tachida H (2005) Compositional properties of green-plant plastid genomes. J Mol Evol 60:417–425

    Article  PubMed  CAS  Google Scholar 

  • Laroche J, Bousquet J (1999) Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1. Mol Biol Evol 16:441–452

    PubMed  CAS  Google Scholar 

  • Li WH, Wu CI, Luo CC (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    PubMed  Google Scholar 

  • Lynch M (2002) Intron evolution as a population-genetic process. Proc Natl Acad Sci USA 99:6118–23

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  PubMed  CAS  Google Scholar 

  • Martins EP (2000) Adaptation and the comparative method. Trends Ecol Evol 15:296–299

    Article  PubMed  Google Scholar 

  • Martins EP (2004) COMPARE, version 4.6. Computer programs for the statistical analysis of comparative data. Department of Biology, Indiana University, Bloomington. Available at: http://www.compare.bio.indiana.edu/

  • Martins EP, Garland TJ (1991) Phylogenetic analyses of the correlated evolution of continuous characters: a simulation study. Evolution 45:534–557

    Article  Google Scholar 

  • Matthee CA, Eick G, Willows-Munro S, Montgelard C, Pardini AT, Robinson TJ (2007) Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics. Mol Phylogenet Evol 42:827–837

    Article  PubMed  CAS  Google Scholar 

  • Moran PAP (1948) The interpretation of statistical maps. J Roy Stat Soc B 10:243–250

    Google Scholar 

  • Ohta T (1992) The nearly neutral theory of molecular evolution. Annu Rev Ecol Syst 23:263–286

    Article  Google Scholar 

  • Pagel MD (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442

    Article  Google Scholar 

  • Palmer JD (1990) Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet 6:115–120

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, Vendramin GG (2006) Plant phylogeography based on organelle genes: an introduction. In: Weiss S, Ferrand N (eds) Phylogeography of southern European refugia. Springer, New York, pp 23–97

    Google Scholar 

  • Petit RJ, Kremer A, Wagner DB (1993) Finite island model for organelle and nuclear genes in plants. Heredity 71:630–641

    Article  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck GM, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organisation of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    Article  PubMed  CAS  Google Scholar 

  • Rand DM (2001) The units of selection on mitochondrial DNA. Annu Rev Ecol Syst 32:415–448

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rocha EPC, Danchin A (2002) Base composition bias might result from competition for metabolic resources. Trends Genet 18:291–294

    Article  PubMed  CAS  Google Scholar 

  • Selosse MA, Albert B, Godelle B (2001) Reducing the genome size of organelles favours gene transfer to the nucleus. Trends Ecol Evol 16:135–141

    Article  PubMed  Google Scholar 

  • Silvertown J, Dodd M (1996) Comparing plants and connecting traits. In: Silvertown J, Franco M, Harper JL (eds) Plant life histories: ecology, phylogeny and evolution. Cambridge University Press, Cambridge, pp 3–16

    Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Vigouroux Y, Matsuoka Y, Doebley J (2003) Directional evolution for microsatellite size in maize. Mol Biol Evol 20:1480–1483

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov AE (2003) DNA helix: the importance of being GC-rich. Nucleic Acids Res 31:1838–1844

    Article  PubMed  CAS  Google Scholar 

  • Whittle CA, Johnston MO (2003) Broad-scale analysis contradicts the theory that generation time affects molecular evolutionary rates in plants. J Mol Evol 56:223–233

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Gaut B, Clegg M (1990) Chloroplast DNA evolves slowly in the palm family (Arecaceae). Mol Biol Evol 7:303–314

    PubMed  CAS  Google Scholar 

  • Wojciechowski MF (2003) Reconstructing the phylogeny of legumes (Leguminosae): an early 21st century perspective. In: Klitgaard BB, Bruneau A (eds) Advances in legume systematics. Part 10. Higher level systematics. Royal Botanic Garden, Kew, pp 5–35

    Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Woolfit, Bromham L (2003) Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol Biol Evol 20:1545–1555

    Article  PubMed  CAS  Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  PubMed  CAS  Google Scholar 

  • Xia XH, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylog Evol 26:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Jean Bousquet, Arndt Hampe, and Marc-André Selosse for their critical comments on an early version of the manuscript. We thank Béatrice Albert, Anne Atlan, Christian Biémont, Henri Caron, Manuela Casasoli, Deena Decker-Walters, François Delmotte, Claude dePamphilis, Laurent Duret, Joe Felsenstein, Jean-Marc Frigério, Theodore Garland Jr, Pauline Garnier-Géré, Berthold Heinze, Antoine Kremer, Emilia Martins, Brian Morton, Sophie Nadot, Carmen Palacios, David Pot, Jonathan Silvertown, and Dorothy Steane for discussions and help during this work. The research was supported by grants from the EC research program FAIR5-CT97–3795 and by the Bureau des Ressources Génétiques to R. J. Petit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy J. Petit.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duminil, J., Grivet, D., Ollier, S. et al. Multilevel Control of Organelle DNA Sequence Length in Plants. J Mol Evol 66, 405–415 (2008). https://doi.org/10.1007/s00239-008-9095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9095-3

Keywords

Navigation