Skip to main content
Log in

Identification of the B Subtype of γ-Phospholipase A2 Inhibitor from Protobothrops flavoviridis Serum and Molecular Evolution of Snake Serum Phospholipase A2 Inhibitors

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

A cDNA encoding a novel phospholipase A2 (PLA2) inhibitor (PLI) was isolated from a Protobothrops flavoviridis snake (Tokunoshima island, Japan) liver cDNA library. This cDNA encoded a signal peptide of 19 amino acids followed by a mature protein of 181 amino acids. Its N-terminal amino acid sequence was completely in accord with that of a PLI, named PLI-II, previously found in P. flavoviridis serum. PLI-II showed a high similarity in sequence to the B subtype of γPLI, denoted γPLI-B, isolated from Agkistrodon blomhoffii siniticus serum. Thus, PLI-II is P. flavoviridis serum γPLI-B. Since PLI-I, previously isolated from P. flavoviridis serum, can be assigned as γPLI-A, P. flavoviridis serum contains both A and B subtypes of γPLI. Phylogenetic analysis of γPLIs from the sera of various kinds of snakes, Elapinae, Colubrinae, Laticaudinae, Acanthophiinae, Crotalinae, and Pythonidae, based on the amino acid sequences revealed that A and B subtypes of γPLIs are clearly separated from each other. It was also found that phylogenetic topologies of γPLIs are in good agreement with speciation processes of snakes. The BLAST search followed by analyses with particular Internet search engines of proteins with Cys/loop frameworks similar to those of PLI-II and PLI-I revealed that γPLI-Bs, including PLI-II and PLI-II-like proteins from mammalian sources, form a novel PLI-II family which possesses the common Cys/loop frameworks in the anterior and posterior three-finger motifs in the molecules. Several lines of evidence suggest that PLI-II is evolutionarily ancestral to PLI-I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brunie S, Bolin J, Gewirth D, Sigler PB (1985) The refined crystal structure of dimeric phospholipase A2 at 2.5 Å. Access to a shielded catalytic center. J Biol Chem 260:9742–9749

    CAS  Google Scholar 

  • Cadle JE (1987) Geographic distribution: problems in phylogeny and zoogeography. In: Seigel RA, Collins JT, Novak SS (eds) Snakes: ecology and evolutionary biology. Macmillan, New York, pp 77–105

    Google Scholar 

  • Casey JR, Petranka JG, Kottra J, Fleenor DE, Rosse WF (1994) The structure of the urokinase-type plasminogen activator receptor gene. Blood 84:1151–1156

    PubMed  CAS  Google Scholar 

  • Chijiwa T, Yamaguchi Y, Ogawa T, Deshimaru M, Nobuhisa I, Nakashima K, Oda-Ueda N, Fukumaki Y, Hattori S, Ohno M (2003) Interisland evolution of Trimeresurus flavoviridis venom phospholipase A2 isozymes. J Mol Evol 56:286–293

    Article  PubMed  CAS  Google Scholar 

  • Cundall D, Wallach V, Rossman DA (1993) The systematic relationships of the snake genus Anomochilus. Zool J Linn Soc 109:275–299

    Article  Google Scholar 

  • Dijkstra BW, Kalk KH, Hol WG, Drenth J (1981) Structure of bovine pancreatic phospholipase A2 at 1.7 Å resolution. J Mol Biol 147:97–123

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra BW, Renetseder R, Kalk KH, Hol WG, Drenth J (1983) Structure of porcine pancreatic phospholipase A2 at 2.6 Å resolution and comparison with bovine phospholipase A2. J Mol Biol 168:163–179

    Article  PubMed  CAS  Google Scholar 

  • Dufton MJ, Hider RC (1983) Classification of phospholipases A2 according to sequence. Evolutionary and pharmacological implications. Eur J Biochem 137:545–551

    Article  PubMed  CAS  Google Scholar 

  • Dunn RD, Broady KW (2001) Snake inhibitors of phospholipase A2 enzymes. Biochim Biophys Acta 1533:29–37

    PubMed  CAS  Google Scholar 

  • Ernst CH, Zug GR, Griffin MD (1996) Snakes in question: the Smithsonian answer book. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fleming TJ, O’hUigin C, Malek TR (1993) Characterization of two novel Ly-6 genes. Protein sequence and potential structural similarity to alpha-bungarotoxin and other neurotoxins. J Immunol 150:5379–5390

    PubMed  CAS  Google Scholar 

  • Fortes-Dias CL, Lin Y, Ewell J, Diniz CR, Liu TY (1994) A phospholipase A2 inhibitor from the plasma of the South American rattlesnake (Crotalus durissus terrificus). Protein structure, genomic structure, and mechanism of action. J Biol Chem 269:15646–15651

    PubMed  CAS  Google Scholar 

  • Fortes-Dias CL, Barcellos CJ, Estevao-Costa MI (2003) Molecular cloning of a gamma-phospholipase A2 inhibitor from Lachesis muta muta (the bushmaster snake). Toxicon 41:909–917

    Article  PubMed  CAS  Google Scholar 

  • Fuse N, Tsuchiya T, Nonomura Y, Menez A, Tamiya T (1990) Structure of the snake short-chain neurotoxin, erabutoxin c, precursor gene. Eur J Biochem 193:629–633

    Article  PubMed  CAS  Google Scholar 

  • Hains PG, Sung KL, Tseng A, Broady KW (2000) Functional characteristics of a phospholipase A2 inhibitor from Notechis ater serum. J Biol Chem 275:983–991

    Article  PubMed  CAS  Google Scholar 

  • Hains PG, Nield B, Sekuloski S, Dunn R, Broady K (2001) Sequencing and two-dimensional structure prediction of a phospholipase A2 inhibitor from the serum of the common tiger snake (Notechis scutatus). J Mol Biol 312:875–884

    Article  PubMed  CAS  Google Scholar 

  • Hattori M, Sakaki Y (1986) Dideoxy sequencing method using denatured plasmid templates. Anal Biochem 152:232–238

    Article  PubMed  CAS  Google Scholar 

  • Holland DR, Clancy LL, Muchmore SW, Ryde TJ, Einspahr HM, Finzel BC, Heinrikson RL, Watenpaugh KD (1990) The crystal structure of a lysine49 phospholipase A2 from the venom of the cottonmouth snake at 2.0-Å resolution. J Biol Chem 265:17649–17656

    PubMed  CAS  Google Scholar 

  • Inoue S, Kogaki H, Ikeda K, Samejima Y, Omori-Satoh T (1991) Amino acid sequences of the two subunits of a phospholipase A2 inhibitor from the blood plasma of Trimeresurus flavoviridis. J Biol Chem 266:1001–1007

    PubMed  CAS  Google Scholar 

  • Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii Y, Arakawa T, Hara A, Fukunishi Y, Konno H, Adachi J, Fukuda S, Aizawa K, Izawa M, Nishi K, Kiyosawa H, Kondo S, Yamanaka I, Saito T, Okazaki Y, Gojobori T, Bono H, Kasukawa T, Saito R, Kadota K, Matsuda H, Ashburner M, Batalov S, Casavant T, Fleischmann W, Gaasterland T, Gissi C, King B, Kochiwa H, Kuehl P, Lewis S, Matsuo Y, Nikaido I, Pesole G, Quackenbush J, Schriml LM, Staubli F, Suzuki R, Tomita M, Wagner L, Washio T, Sakai K, Okido T, Furuno M, Aono H, Baldarelli R, Barsh G, Blake J, Boffelli D, Bojunga N, Carninci P, de Bonaldo MF, Brownstein MJ, Bult C, Fletcher C, Fujita M, Gariboldi M, Gustincich S, Hill D, Hofmann M, Hume DA, Kamiya M, Lee NH, Lyons P, Marchionni L, Mashima J, Mazzarelli J, Mombaerts P, Nordone P, Ring B, Ringwald M, Rodriguez I, Sakamoto N, Sasaki H, Sato K, Schonbach C, Seya T, Shibata Y, Storch KF, Suzuki H, Toyo-oka K, Wang KH, Weitz C, Whittaker C, Wilming L, Wynshaw-Boris A, Yoshida K, Hasegawa Y, Kawaji H, Kohtsuki S, Hayashizaki Y, RIKEN Genome Exploration Research Group Phase II Team, the FANTOM Consortium (2001) Functional annotation of a full-length mouse cDNA collection. Nature 409:685–690

    Article  PubMed  Google Scholar 

  • Kieffer B, Driscoll PC, Campbell ID, Willis AC, van der Merwe PA, Davis SJ, (1994) Three-dimensional solution structure of the extracellular region of the complement regulatory protein CD59, a new cell-surface protein domain related to snake venom neurotoxins. Biochemistry 33:4471–4482

    Article  PubMed  CAS  Google Scholar 

  • Kihara H (1976) Studies on phospholipases A2 in Trimeresurus flavoviridis venom. Purification and some properties of phospholipases A2 inhibitor in habu serum. J Biochem (Tokyo) 80:341–349

    CAS  Google Scholar 

  • Kihara H, Uchikawa R, Hattori S, Ohno M (1992) Myotoxicity and physiological effects of three Trimeresurus flavoviridis phospholipases A2. Biochem Int 28:895–903

    PubMed  CAS  Google Scholar 

  • Kimura M (1969) The rate of molecular evolution considered from the standpoint of population genetics. Proc Natl Acad Sci USA 63:1181–1188

    Article  PubMed  CAS  Google Scholar 

  • Kogaki H, Inoue S, Ikeda K, Samejima Y, Omori-Satoh T, Hamaguchi K (1989) Isolation and fundamental properties of a phospholipase A2 inhibitor from the blood plasma of Trimeresurus flavoviridis. J Biochem (Tokyo) 106:966–971

    CAS  Google Scholar 

  • Liu SY, Yoshizumi K, Oda N, Ohno M, Tokunaga F, Iwanaga S, Kihara H (1990) Purification and amino acid sequence of basic protein II, a lysine-49-phospholipase A2 with low activity, from Trimeresurus flavoviridis venom. J Biochem (Tokyo) 107:400–408

    CAS  Google Scholar 

  • Lizano S, Angulo Y, Lomonte B, Fox JW, Lambeau G, Lazdunski M, Gutierrez JM, (2000) Two phospholipase A2 inhibitors from the plasma of Cerrophidion (Bothrops) godmani which selectively inhibit two different group-II phospholipase A2 myotoxins from its own venom: isolation, molecular cloning and biological properties. Biochem J 346:631–639

    Article  PubMed  CAS  Google Scholar 

  • Maraganore JM, Heinrikson RL (1986) The lysine-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus. Relation of structure and function to other phospholipases A2. J Biol Chem 261:4797–4804

    PubMed  CAS  Google Scholar 

  • Maraganore JM, Merutka G, Cho W, Welches W, Kézdy FJ, Heinrikson RL (1984) A new class of phospholipases A2 with lysine in place of aspartate 49. Functional consequences for calcium and substrate binding. J Biol Chem 259:13839–13843

    PubMed  CAS  Google Scholar 

  • Nakashima K, Ogawa T, Oda N, Hattori M, Sakaki Y, Kihara H, Ohno M (1993) Accelerated evolution of Trimeresurus flavoviridis venom gland phospholipase A2 isozymes. Proc Natl Acad Sci USA 90:5964–5968

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Nobuhisa I, Deshimaru M, Nakai M, Ogawa T, Shimohigashi Y, Fukumaki Y, Hattori M, Sakaki Y, Hattori S, Ohno M (1995) Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. Proc Natl Acad Sci USA 92:5605–5609

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nobuhisa I, Deshimaru M, Chijiwa T, Nakashima K, Ogawa T, Shimohigashi Y, Fukumaki Y, Hattori S, Kihara H, Ohno M (1997a) Structures of genes encoding phospholipase A2 inhibitors from the serum of Trimeresurus flavoviridis snake. Gene 191:31–37

    Article  PubMed  CAS  Google Scholar 

  • Nobuhisa I, Inamasu S, Nakai M, Tatsui A, Mimori T, Ogawa T, Shimohigashi Y, Fukumaki Y, Hattori S, Kihara H, Ohno M (1997b) Characterization and evolution of a gene encoding a Trimeresurus flavoviridis serum protein that inhibits basic phospholipase A2 isozymes in the snake’s venom. Eur J Biochem 249:838–845

    Article  PubMed  CAS  Google Scholar 

  • Nobuhisa I, Chiwata T, Fukumaki Y, Hattori S, Shimohigashi Y, Ohno M (1998) Structural elements of Trimeresurus flavoviridis serum inhibitors for recognition of its venom phospholipase A2 isozymes. FEBS Lett 429:385–389

    Article  PubMed  CAS  Google Scholar 

  • Oda N, Ogawa T, Ohno M, Sasaki H, Sakaki Y, Kihara H (1990) Cloning and sequence analysis of cDNA for Trimeresurus flavoviridis phospholipase A2, and consequent revision of the amino acid sequence. J Biochem (Tokyo) 108:816–821

    CAS  Google Scholar 

  • Ogawa T, Oda N, Nakashima K, Sasaki H, Hattori M, Sakaki Y, Kihara H, Ohno M (1992) Unusually high conservation of untranslated sequences in cDNAs for Trimeresurus flavoviridis phospholipase A2 isozymes. Proc Natl Acad Sci USA 89:8557–8561

    Article  PubMed  CAS  Google Scholar 

  • Ohkura N, Inoue S, Ikeda K, Hayashi K (1994) The two subunits of a phospholipase A2 inhibitor from the plasma of Thailand cobra having structural similarity to urokinase-type plasminogen activator receptor and LY-6 related proteins. Biochem Biophys Res Commun 204:1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Ohkura N, Okuhara H, Inoue S, Ikeda K, Hayashi K (1997) Purification and characterization of three distinct types of phospholipase A2 inhibitors from the blood plasma of the Chinese mamushi, Agkistrodon blomhoffi siniticus. Biochem J 325:527–531

    PubMed  CAS  Google Scholar 

  • Ohkura N, Kitahara Y, Inoue S, Ikeda K, Hayashi K (1999) Isolation and amino acid sequence of a phospholipase A2 inhibitor from the blood plasma of the sea krait, Laticauda semifasciata. J Biochem (Tokyo) 125:375–382

    CAS  Google Scholar 

  • Ohno M, Ménez R, Ogawa T, Danse JM, Shimohigshi Y, Fromen C, Ducancel F, Zinn-Justin S, Le Du MH, Boulain JC, Tamiya T, Ménez A (1998) Molecular evolution of snake toxins: is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? Prog Nucleic Acid Res Mol Biol 59:307–364

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Ogawa T, Oda-Ueda N, Chijiwa T, Hattori S (2002) Accelerated and regional evolution of snake venom gland isozymes. In: Ménez A (ed) Perspectives in molecular toxinology. John Wiley & Sons, New York, pp 387–400

    Google Scholar 

  • Ohno M, Chijiwa T, Oda-Ueda N, Ogawa T, Hattori S (2003) Molecular evolution of myotoxic phospholipases A2 from snake venom. Toxicon 42:841–854

    Article  PubMed  CAS  Google Scholar 

  • Okumura K, Inoue S, Ohkura N, Ikeda K, Hayashi K (1999a) cDNA cloning of the two subunits of phospholipase A2 inhibitor PLIgamma from blood plasma of the Chinese mamushi, Agkistrodon blomhoffi siniticus. IUBMB Life 48:99–104

    PubMed  CAS  Google Scholar 

  • Okumura K, Masui K, Inoue S, Ikeda K, Hayashi K (1999b) Purification, chracterization and cDNA cloning of a phospholipase A2 inhibitor from the serum of the nonvenomous snake Elaphe quadrivirgata. Biochem J 341:165–171

    Article  PubMed  CAS  Google Scholar 

  • Petranka JG, Fleenor DE, Sykes K, Kaufman RE, Rosse WF (1992) Structure of the CD59-encoding gene: further evidence of a relationship to murine lymphocyte antigen Ly-6 protein. Proc Natl Acad Sci USA 89:7876–7879

    Article  PubMed  CAS  Google Scholar 

  • Renetseder R, Brunie S, Dijkstra BW, Drenth J, Sigler PB (1985) A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. J Biol Chem 260:11627–11634

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sekuloski S, Dunn RD, Broady KW (1999) AF211155–AF211168

  • Stone KL, Lopresti MB, Crawford JM, DeAngelis R, Williams KR (1989) Enzymatic digestion of proteins and HPLC peptide isolation. In: Matsudaira PT (ed) A practical guide to protein and peptide purification for microsequencing, Academic Press, New York, pp 33–47

    Google Scholar 

  • Suzuki A, Matsueda E, Yamane T, Ashida T, Kihara H, Ohno M (1995) Crystal structure analysis of phospholipase A2 from Trimeresurus flavoviridis (Habu snake) venom at 1.5Å resolution. J Biochem (Tokyo) 117:730–740

    CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thwin MM, Gopalakrishnakone P, Kini RM, Armugam A, Jeyaseelan K (2000) Recombinant antitoxic and antiinflammatory factor from the nonvenomous snake Python reticulatus: phospholipase A2 inhibition and venom neutralizing potential. Biochemistry 39:9604–9611

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Shimohigashi Y, Chijiwa T, Nakai M, Ogawa T, Hattori S, Ohno M (2001) Characterization, amino acid sequence and evolution of edema-inducing, basic phospholipae A2 from Trimeresurus flavoviridis venom. Toxicon 39:1069–1076

    Article  PubMed  CAS  Google Scholar 

  • Yoshizumi K, Liu SY, Miyata T, Saita S, Ohno M, Iwanaga S, Kihara H (1990) Purification and amino acid sequence of basic protein I, a lysine-49-phospholipase A2 with low activity, from the venom of Trimeresurus flavoviridis (Habu snake). Toxicon 28:43–54

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by Grants-in Aid for Young Scientists under category “A” for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (T.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahito Chijiwa.

Additional information

The nucleotide sequence reported in this paper is available from the GenBank/EMBL/DDBJ databases under accession number AB290845.

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, S., Chijiwa, T., Ikeda, N. et al. Identification of the B Subtype of γ-Phospholipase A2 Inhibitor from Protobothrops flavoviridis Serum and Molecular Evolution of Snake Serum Phospholipase A2 Inhibitors. J Mol Evol 66, 298–307 (2008). https://doi.org/10.1007/s00239-008-9089-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9089-1

Keywords

Navigation