Skip to main content
Log in

Coevolutionary Patterns in Cytochrome c Oxidase Subunit I Depend on Structural and Functional Context

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The strength and pattern of coevolution between amino acid residues vary depending on their structural and functional environment. This context dependence, along with differences in analytical technique, is responsible for the different results among coevolutionary analyses of different proteins. It is thus important to perform detailed study of individual proteins to gain better insight into how context dependence can affect coevolutionary patterns even within individual proteins, and to unravel the details of context dependence with respect to structure and function. Here we extend our previous study by presenting further analysis of residue coevolution in cytochrome c oxidase subunit I sequences from 231 vertebrates using a statistically robust phylogeny-based maximum likelihood ratio method. As in previous studies, a strong overall coevolutionary signal was detected, and coevolution within structural regions was significantly related to the Cα distances between residues. While the strong selection for adjacent residues among predicted coevolving pairs in the surface region indicates that the statistical method is highly selective for biologically relevant interactions, the coevolutionary signal was strongest in the transmembrane region, although the distances between coevolving residues were greater. This indicates that coevolution may act to maintain more global structural and functional constraints in the transmembrane region. In the transmembrane region, sites that coevolved according to polarity and hydrophobicity rather than volume had a greater tendency to colocalize with just one of the predicted proton channels (channel H). Thus, the details of coevolution in cytochrome c oxidase subunit I depend greatly on domain structure and residue physicochemical characteristics, but proximity to function appears to play a critical role. We hypothesize that coevolution is indicative of a more important functional role for this channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Argos P, Rao JK, Hargrave PA (1982) Structural prediction of membrane-bound proteins. Eur J Biochem 128:565–575

    Article  PubMed  CAS  Google Scholar 

  • Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, Dress AW (2000) Correlation among amino acid sites in bHLH protein domains: An information theoretic analysis. Mol Biol Evol 17:164–178

    PubMed  CAS  Google Scholar 

  • Atchley WR, Zhao J, Fernandes AD, Druke T (2005) Solving the protein sequence metric problem. Proc Natl Acad Sci USA 102:6395–6400

    Article  PubMed  CAS  Google Scholar 

  • Bahar I, Jernigan RL (1997) Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J Mol Biol 266:195–214

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D (2005) Quantitative trait loci analysis using the false discovery rate. Genetics 171:783–790

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Chelli R, Gervasio FL, Procacci P, Schettino V (2004) Inter-residue and solvent-residue interactions in proteins: a statistical study on experimental structures. Proteins: Structure, Function, and Bioinformatics 55:139–151

    Article  CAS  Google Scholar 

  • Chelvanayagam G, Eggenschwiler A, Knecht L, Connet GH, Benner SA (1997) An analysis of simultaneous variation in protein structures. Protein Eng 10:307–316

    Article  PubMed  CAS  Google Scholar 

  • de Kreij A, van den Burg B, Venema G, Vriend G, Eijsink VGH, Nielsen JE (2002) The effects of modifying the surface charge on the catalytic activity of a thermolysinlike protease. J Biol Chem 277:15432–15438

    Article  PubMed  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA

    Google Scholar 

  • Dimmic MW, Hubisz MJ, Bustamante CD, Nielsen R (2005) Detecting coevolving amino acid sites using Bayesian mutational mapping. Bioinformatics 21:I126–I135

    Article  PubMed  CAS  Google Scholar 

  • Dutheil J, Pupko T, Jean-Marie A, Galtier N (2005) A model-based approach for detecting coevolving positions in a molecule. Mol Biol Evol 22:1919–1928

    Article  PubMed  CAS  Google Scholar 

  • Faith JJ, Pollock DD (2003) Likelihood analysis of asymmetrical mutation bias gradients in vertebrate mitochondrial genomes. Genetics 165:735–745

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) Phylogeny inference package. Cladistics 5:164–166

    Google Scholar 

  • Fleishman SJ, Yifrach O, Ben-Tal N (2004) An evolutionarily conserved network of amino acids mediates gating in voltage-dependent potassium channels. J Mol Biol 340:307–318

    Article  PubMed  CAS  Google Scholar 

  • Fukami-Kobayashi K, Schreiber DR, Benner SA (2002) Detecting compensatory covariation signals in protein evolution using reconstructed ancestral sequences. J Mol Biol 319:729–743

    Article  PubMed  CAS  Google Scholar 

  • Gennis RB (1998) Protein structure: cytochrome c oxidase: one enzyme, two mechanisms? Science 280:1712–1713

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan S, Ness JE, Kim S, Mundorff EC, Minshull J, Gustafsson C (2003) Systematic variation of amino acid substitutions for stringent assessment of pairwise covariation. J Mol Biol 328:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864

    Article  PubMed  CAS  Google Scholar 

  • Gromiha MM, Selvaraj S (2001) Role of medium and long-range interactions in discriminating globular and membrane proteins. Int J Biol Macromol 29:25–34

    Article  PubMed  CAS  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Hedstrom L, Perona JJ, Rutter WJ (1994) Converting trypsin to chymotrypsin-residue-172 is a substrate-specificity determinant. Biochemistry (Mosc) 33:8757–8763

    Article  CAS  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8?resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    PubMed  CAS  Google Scholar 

  • Kilosanidze GT, Kutsenko AS, Esipova NG, Tumanyan VG (2004) Analysis of forces that determine helix formation in {alpha}-proteins. Protein Sci 13:351–357

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov AS, Sunyaev S, Kondrashov FA (2002) Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci USA 99:14878–14883

    Article  PubMed  CAS  Google Scholar 

  • Krigbaum WR, Komoriya A (1979) Local interactions as a structure determinant fro protein molecules: II. Biochim Biophys Acta 576:204–248

    PubMed  CAS  Google Scholar 

  • Namslauer A, Brzezinski P (2004) Structural elements involved in electron-coupled proton transfer in cytochrome c oxidase. FEBS Lett 567:103–110

    Article  PubMed  CAS  Google Scholar 

  • Nahum LA, Reynolds TR, Wang ZO, Faith JJ, Jonna R, Jiang ZJ, Meyer TJ, Pollock DD (2006) EGenBio: A data management system for evolutionary genomics and biodiversity. BMC Bioinformatics 7(Suppl 2):S7

    Article  PubMed  CAS  Google Scholar 

  • Neher E (1994) How frequent are correlated changes in families of protein sequences? Proc Natl Acad Sci USA 91:98–102

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Capitanio N, Capitanio G (2004) A cooperative model for proton pumping in cytochrome c oxidase. Biochim Biophys Acta Bioenerg 1655:353–364

    Article  CAS  Google Scholar 

  • Pereira MM, Teixeira M (2004) Proton pathways, ligand binding and dynamics of the catalytic site in haem-copper oxygen reductases: a comparison between the three families. Biochim Biophys Acta Bioenerg 1655:340–346

    Article  CAS  Google Scholar 

  • Perona JJ, Hedstrom L, Rutter WJ, Fletterick RJ (1995) Structural orgins of substrate discrimination in trypsin and chymotrypsin. Biochemistry (Mosc) 34:1489–1499

    Article  CAS  Google Scholar 

  • Pollock DD, Taylor WR (1997) Effectiveness of correlation analysis in identifying protein residues undergoing correlated evolution. Protein Eng 10:647–657

    Article  PubMed  CAS  Google Scholar 

  • Pollock DD, Taylor WR, Goldman N (1999) Coevolving protein residues: maximum likelihood identification and relationship to structure. J Mol Biol 287:187–198

    Article  PubMed  CAS  Google Scholar 

  • Pritchard L, Bladon P, Mitchell JMO, Dufton MJ (2001) Evaluation of a novel method for the identification of coevolving protein residues. Protein Eng 14:459–555

    Article  Google Scholar 

  • Russell AJ, Fersht AR (1987) Rational modification of enzyme catalysis by engineering surface-charge. Nature 328:496–500

    Article  PubMed  CAS  Google Scholar 

  • Saraf MC, Moore GL, Maranas CD (2003) Using multiple sequence correlation analysis to characterize functionally important protein regions. Protein Eng 16:397–406

    Article  PubMed  CAS  Google Scholar 

  • Shindyalov I, Kolchanov N, Sander C (1994) Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations? Protein Eng 7:349–358

    Article  PubMed  CAS  Google Scholar 

  • Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P, Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339

    Article  PubMed  CAS  Google Scholar 

  • Taylor W, Hatrick K (1994) Compensating changes in protein multiple sequence alignments. Protein Eng 7:341–348

    Article  PubMed  CAS  Google Scholar 

  • Thomas PG, Russell AJ, Fersht AR (1985) Tailoring the Ph-dependence of enzyme catalysis using protein engineering. Nature 318:375–376

    Article  CAS  Google Scholar 

  • Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144

    Article  PubMed  CAS  Google Scholar 

  • Tuffery P, Darlu P (2000) Exploring a phylogenetic approach for the detection of correlated substitutions in proteins. Mol Biol Evol 17:1753–1759

    CAS  Google Scholar 

  • Valencia A, Pazos F (2002) Computational methods for the prediction of protein interactions. Curr Opin Struct Biol 12:368–373

    Article  PubMed  CAS  Google Scholar 

  • Wang ZO, Pollock DD (2005) Context dependence and coevolution among amino acid residues in proteins. Methods Enzymol 395:779–790

    Article  PubMed  CAS  Google Scholar 

  • Wollenberg KR, Atchley WR (2000) Separation of phylogenetic and functional association in biological sequences by using the parametric bootstrap. Proc Natl Acad Sci U S A 97:3288–3291

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa S (2003) A cytochrome c oxidase proton pumping mechanism that excludes the O2 reduction site. FEBS Lett 555:8–12

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–1729

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Judith Beekman for useful comments on the manuscript and Matt Reynolds for contributions to the EGenBio database. This work was supported by grants from the National Institutes of Health (GM065612 and GM065580), the National Science Foundation (through Louisiana EPSCOR and the Center for Biomodular Multi-scale Systems), and the State of Louisiana Board of Regents (Research Competitiveness Subprogram LEQSF 2001-04-RD-A-08 and the Millennium Research Program’s Biological Computation and Visualization Center) and Governor’s Biotechn ology Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Pollock.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z.O., Pollock, D.D. Coevolutionary Patterns in Cytochrome c Oxidase Subunit I Depend on Structural and Functional Context. J Mol Evol 65, 485–495 (2007). https://doi.org/10.1007/s00239-007-9018-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-9018-8

Keywords

Navigation