Skip to main content
Log in

Fine-Scale Crossover Rate Heterogeneity in Drosophila pseudoobscura

  • Letter to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Broad-scale differences in crossover rate across the genome have been characterized in most genomes studied. Fine-scale differences, however, have only been examined in a few taxa, such as Arabidopsis, yeast, humans, and mice. No prior studies have directly looked for fine-scale recombination rate heterogeneity in Drosophila. We produced 370 Drosophila pseudoobscura containing a crossover event within the 2-megabase (MB) region between the genes yellow and white. We then examined 19 intervals within this region and determined where the crossovers occurred. We found that recombination events occur nonrandomly on a small scale and that mild “hotspots“ of a few kilobases exist in Drosophila. Among the regions studied, recombination rates varied from 1.4 to 52 cM/MB. We also observed a trend toward high codon bias in regions of high recombination. Finally, we identified a significantly positive correlation between recombination rate and simple repeats, as well as the motif CACAC. These sequence features may contribute to broad-scale variation in crossover rate and, thus, shed light on features associated with crossover rate heterogeneity at a genome-wide scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281:1986–1990

    Article  PubMed  CAS  Google Scholar 

  • Butlin RK (2005) Recombination and speciation. Mol Ecol 14:2621–2635

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  PubMed  CAS  Google Scholar 

  • Comeron JM, Kreitman M, Aguade M (1999) Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics 151:239–249

    PubMed  CAS  Google Scholar 

  • Curtis D, Clark SH, Chovnick A, Bender W (1989) Molecular analysis of recombination events in Drosophila. Genetics 122:653–661

    PubMed  CAS  Google Scholar 

  • de Massy B (2003) Distribution of meiotic recombination sites. Trends Genet 19:514–522

    Article  PubMed  CAS  Google Scholar 

  • Drouaud J, Camilleri C, Bourguignon PY, Canaguier A, Berard A, et al. (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots.“ Genome Res 16:106–114

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78:737–756

    PubMed  CAS  Google Scholar 

  • Foss E, Lande R, Stahl FW, Steinberg CM (1993) Chiasma interference as a function of genetic distance. Genetics 133:681–691

    PubMed  CAS  Google Scholar 

  • Gloor GB, Engels WR (1992) Single-fly DNA preps for PCR. Drosoph Info Serv 71:148–149

    Google Scholar 

  • Guillon H, de Massy B (2002) An initiation site for meiotic crossing-over and gene conversion in the mouse. Nat Genet 32:296–299

    Article  PubMed  CAS  Google Scholar 

  • Hey J (2004) What‘s so hot about recombination hotspots? PLoS Biol 2:e190

    Article  PubMed  CAS  Google Scholar 

  • Hey J, Kliman RM (2002) Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics 160:595–608

    PubMed  CAS  Google Scholar 

  • Hill WG, Robertson A (1966) The effect of linkage on the limits to artificial selection. Genet Res 8:269–294

    Article  PubMed  CAS  Google Scholar 

  • Hillier LW, Miller W, Birney E, Warren W, Hardison RC, et al. (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  CAS  Google Scholar 

  • Hilliker AJ, Clark SH, Chovnick A (1991) The effect of DNA sequence polymorphisms on intragenic recombination in the rosy locus of Drosophila melanogaster. Genetics 129:779–781

    PubMed  CAS  Google Scholar 

  • Isobe T, Yoshino M, Mizuno K, Lindahl KF, Koide T, et al. (2002) Molecular characterization of the Pb recombination hotspot in the mouse major histocompatibility complex class II region. Genomics 80:229–235

    Article  PubMed  CAS  Google Scholar 

  • Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, et al. (2004) Comparative recombination rates in the rat, mouse, and human genomes. Genome Res 14:528–538

    Article  PubMed  CAS  Google Scholar 

  • Jones GH (1984) The control of chiasma distribution. Symp Soc Exp Biol 38:293–320

    PubMed  CAS  Google Scholar 

  • Kliman RM, Hey J (1993) Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol 10:1239–1258

    PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lynn A, Ashley T, Hassold T (2004) Variation in human meiotic recombination. Annu Rev Genomics Hum Genet 5:317–349

    Article  PubMed  CAS  Google Scholar 

  • Marais G, Mouchiroud D, Duret L (2001) Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci USA 98:5688–5692

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1916) The mechanism of crossing-over. Am Nat 50:193–221

    Article  Google Scholar 

  • Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005a) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324

    Article  PubMed  CAS  Google Scholar 

  • Nachman MW (2002) Variation in recombination rate across the genome: evidence and implications. Curr Opin Genet Dev 12:657–663

    Article  PubMed  CAS  Google Scholar 

  • Orr HA (1995) A new linkage map of the D. pseudoobscura X chromosome. Drosoph Info Serv 76:127–128

    Google Scholar 

  • Ortiz-Barrientos D, Reiland J, Hey J, Noor MAF (2002) Recombination and the divergence of hybridizing species. Genetica 116:167–178

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Barrientos D, Chang AS, Noor MAF (2006) A recombinational portrait of the Drosophila pseudoobscura genome. Genet Res Cambr 87:23–31

    Article  CAS  Google Scholar 

  • Otto SP, Barton NH (1997) The evolution of recombination: removing the limits to natural selection. Genetics 147:879–906

    PubMed  CAS  Google Scholar 

  • Palsson A, Rouse A, Riley-Berger R, Dworkin I, Gibson G (2004) Nucleotide variation in the Egfr locus of Drosophila melanogaster. Genetics 167:1199–1212

    Article  PubMed  CAS  Google Scholar 

  • Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland, MA, pp 205–247

    Google Scholar 

  • Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369

    Article  PubMed  CAS  Google Scholar 

  • Reed FA, Tishkoff SA (2006) Positive selection can create false hotspots of recombination. Genetics 172:2011–2014

    Article  PubMed  CAS  Google Scholar 

  • Richards S, Liu Y, Bettencourt BR, et al. (2005) Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 15:1–18

    Article  PubMed  CAS  Google Scholar 

  • Singh ND, Arndt PF, Petrov DA (2005) Genomic heterogeneity of background substitutional patterns in Drosophila melanogaster. Genetics 169:709–722

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant AH (1915) The behavior of the chromosomes as studied through linkage. Z Indukt Abstammungs-Vererbungsl 13:234–287

    Article  Google Scholar 

  • Takano-Shimizu T (1999) Local recombination and mutation effects on molecular evolution in Drosophila. Genetics 153:1285–1296

    PubMed  CAS  Google Scholar 

  • Takano-Shimizu T (2001) Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes. Mol Biol Evol 18:606–619

    PubMed  CAS  Google Scholar 

  • True JR, Mercer JM, Laurie CC (1996) Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics 142:507–523

    PubMed  CAS  Google Scholar 

  • Weinstein A (1958) The geometry and mechanics of crossing over. Cold Spring Harbor Symp Quant Biol 23:177–196

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank N. Johnson, D. Petrov, N. Walley, and an anonymous reviewer for helpful comments on the manuscript and E. Gragg for technical assistance. Funding for this research was provided by NSF Grants 0509780 and 0549893 to M.A.F.N. and NIH Grant HG02456 to R.M.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. F. Noor.

Additional information

[Reviewing Editor: Dr. Dmitri Petrov]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirulli, E.T., Kliman, R. & Noor, M.A.F. Fine-Scale Crossover Rate Heterogeneity in Drosophila pseudoobscura . J Mol Evol 64, 129–135 (2007). https://doi.org/10.1007/s00239-006-0142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0142-7

Keywords

Navigation