Skip to main content
Log in

Experimental Evolution of Gene Duplicates in a Bacterial Plasmid Model

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The fate of gene duplicates subjected to diversifying selection was tested experimentally in a bacterial system. The wild-type TEM-1 β-lactamase gene confers resistance to ampicillin but not to cefotaxime. Point mutations confer cefotaxime resistance, but they compromise ampicillin resistance. Thus, selection for both drug resistances in a bacterium with two copies of β-lactamase should favor the divergence of one copy to improve cefotaxime resistance while maintaining the other copy to preserve ampicillin resistance. This selection was performed on a bacterium with identical sequences of β-lactamase on two separate, compatible plasmids. As expected, one plasmid evolved increased cefotaxime resistance when appropriately strong cefotaxime selection was applied. However, the cefotaxime-resistant plasmid maintained sufficient ampicillin resistance to tolerate the concentration of ampicillin used, and the other plasmid was lost. Hosts carrying both the cefotaxime-resistant and wild-type plasmids were then subjected to various higher concentrations of both drugs to find conditions that would ensure the maintenance of both plasmids. In a striking contradiction to our model, no such conditions were found. The fitness cost of carrying both plasmids increased dramatically as antibiotic levels were raised, and either the wild-type plasmid was lost or the cells did not grow. This study highlights the importance of the cost of duplicate genes and the quantitative nature of the tradeoff in the evolution of gene duplication through functional divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Dykhuizen DE, Hartl DL (1983) Selection in chemostats. Microbiol Rev 47:150–168

    PubMed  CAS  Google Scholar 

  • Gniadkowski M, Schneider I, Jungwirth R, Hryniewicz W, Bauernfeind A (1998) Ceftazidime-resistant Enterobacteriaceae isolates from three Polish hospitals: identification of three novel TEM- and SHV-5-type extended-spectrum beta-lactamases. Antimicrob Agents Chemother 42:514–520

    PubMed  CAS  Google Scholar 

  • Gu X, Wang Y, Gu J (2002) Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nature Genet 31:205–209

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond [Biol] 256:119–124

    Article  CAS  Google Scholar 

  • Kortschak R, Tamme R, Lardelli M (2001) Evolutionary analysis of vertebrate Notch genes. Dev Genes Evol 211:350–354

    Article  PubMed  CAS  Google Scholar 

  • Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 279:565–570

    Article  Google Scholar 

  • Livermore DM, Pitt TL (1986) Dissociation of surface properties and “intrinsic” resistance to beta lactams in Pseudomonas aeruginosa. J Med Microbiol 22:217–224

    Article  PubMed  CAS  Google Scholar 

  • Long-McGie J, Liu AD, Schellenberger V (2000) Rapid in vivo evolution of a β-lactamase using phagemids. Biotechnol Bioeng 68:121–125

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, Heidelberg

    Google Scholar 

  • Ohno S (1999) Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. Cell Dev Biol 10:517–522

    Article  CAS  Google Scholar 

  • Ono-Koyanagi K, Suga H, Katoh K, Miyata T (2000) Protein tyrosine phosphatases from amphioxus, hagfish, and ray: divergence of tissue-specific isoform genes in the early evolution of vertebrates. J Mol Evol 50:302–311

    PubMed  CAS  Google Scholar 

  • Palzkill T, Le Q-Q, Venkatachalam KV, LaRocco M, Ocera H (1994) Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of B-lactamase. Mol Microbiol 12:217–229

    Article  PubMed  CAS  Google Scholar 

  • Petrosino JF, Baker M, Palzkill T (1999) Susceptibility of B-lactamase to core amino acid substitutions. Protein Eng 12:761–769

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Yandell MD, Wortman JR, Miklos GLG, Nelson CR, Hariharan IK (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  PubMed  CAS  Google Scholar 

  • Stapleton PD, Shannon KP, French GL (1999) Construction and characterization of mutants of the TEM-1 β-lactamase containing amino acid substitutions associated with both extended-spectrum resistance and resistance to β-lactamase inhibitors. Antimicrob Agents Chemother 43:1881–1887

    PubMed  CAS  Google Scholar 

  • Walsh JB (2003) Population-genetic models of the fates of duplicate genes. Genetica 118:279–294

    Article  PubMed  CAS  Google Scholar 

  • Vakulenko SB, Taibi-Tronche P, Toth M, Massova I, Lerner SA, Mobashery S (1999) Effects on substrate profile by mutational substitutions at positions 164 and 179 of the class A TEM(pUC19) beta-lactamase from Escherichia coli. J Biol Chem 274:23052–23060

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Joseph, R. Heineman, R. Springman, W. Harcombe, J. Brown, and J. Sachs for helpful discussions and three anonymous reviewers for insightful comments and suggestions. This work was supported by NIH Grant GM57756 to J.J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisha K. Holloway.

Additional information

Reviewing Editor: Dr. Margaret Riley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holloway, A.K., Palzkill, T. & Bull, J.J. Experimental Evolution of Gene Duplicates in a Bacterial Plasmid Model. J Mol Evol 64, 215–222 (2007). https://doi.org/10.1007/s00239-006-0087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0087-x

Keywords

Navigation