Skip to main content

Advertisement

Log in

Lateral Transfers of Serine Hydroxymethyltransferase (glyA) and UDP-N-Acetylglucosamine Enolpyruvyl Transferase (murA) Genes from Free-living Actinobacteria to the Parasitic Chlamydiae

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The chlamydiae are important human and animal pathogens which form a phylogentically distinct lineage within the Bacteria. There is evidence that some genes in these obligate intracellular parasites have undergone lateral exchange with other free-living organisms. In the present work, we describe two interesting cases of lateral gene transfer between chlamydiae and actinobacteria, which have been identified based on the shared presence of conserved inserts in two important proteins. In the enzyme serine hydroxymethyltransferase (SHMT or GlyA protein), which links amino acid and nucleotide metabolisms by generating the key intermediate for one-carbon transfer reactions, two conserved inserts of 3 and 31 amino acids (aa) are uniquely present in various chlamydiae species as well as in a subset of Actinobacteria and in the Treponema species. Similarly, in the enzyme UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), which is involved in the synthesis of cell wall peptidoglycan, a 16-aa conserved insert is specifically present in various sequenced chlamydiae and a subset of actinobacteria (i.e., Streptomyces, Actinomyces, Tropheryma, Bifidobacterium, Leifsonia, Arthrobacter, and Brevibacterium). To determine the phylogenetic depths of the GlyA and MurA inserts, the fragments of these genes from two chlamydiae-like species, Simkania negevensis and Waddlia chondrophila, were PCR amplified and sequenced. The presence of the corresponding inserts in both these species strongly indicates that these inserts are distinctive characteristics of the Chlamydiales order. In phylogenetic trees based on GlyA and MurA protein sequences, the chlamydiae species (and also the Treponema species in the case of GlyA) branched with a high affinity with various insert-containing actinobacteria within a clade of other actinobacteria. These results provide strong evidence that the shared presence of these indels in these bacteria is very likely a consequence of ancient lateral gene transfers from actinobacteria to chlamydiae. Pairwise sequence identity and the branching pattern of the GlyA homologues in the phylogenetic tree indicates that the glyA gene was initially transferred from an actinobacteria to an ancestor of the Treponema genus and from there it was acquired by the common ancestor of the Chlamydiales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  • Andersson SG, Alsmark C, Canback B, Davids W, Frank C, Karlberg O, Klasson L, Antoine-Legault B, Mira A, Tamas I (2002) Comparative genomics of microbial pathogens and symbionts. Bioinformatics 18 (Suppl 2):S17

    PubMed  Google Scholar 

  • Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL, Case RJ, Doolittle WF (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37:283–328

    PubMed  CAS  Google Scholar 

  • Brinkman FS, Blanchard JL, Cherkasov A, Av-Gay Y, Brunham RC, Fernandez RC, Finlay BB, Otto SP, Ouellette BF, Keeling PJ, Rose AM, Hancock RE, Jones SJ, Greberg H (2002) Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res 12:1159–1167

    PubMed  CAS  Google Scholar 

  • Brown ED, Vivas EI, Walsh CT, Kolter R (1995) MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J Bacteriol 177:4194–4197

    PubMed  CAS  Google Scholar 

  • Bush RM, Everett KD (2001) Molecular evolution of the Chlamydiaceae. Int J Syst Evol Microbiol 51:203–220

    PubMed  CAS  Google Scholar 

  • Charon NW, Goldstein SF (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 36:47–73

    PubMed  CAS  Google Scholar 

  • Collingro A, Toenshoff ER, Taylor MW, Fritsche TR, Wagner M, Horn M (2005) ‘Candidatus Protochlamydia amoebophila’, an endosymbiont of Acanthamoeba spp. Int J Syst Evol Microbiol 55:1863–1866

    PubMed  CAS  Google Scholar 

  • Corsaro D, Valassina M, Venditti D (2003) Increasing diversity within Chlamydiae. Crit Rev Microbiol 29:37–78

    PubMed  Google Scholar 

  • Dalevi DA, Eriksen N, Eriksson K, Andersson SG (2002) Measuring genome divergence in bacteria: a case study using chlamydian data. J Mol Evol 55:24–36

    PubMed  CAS  Google Scholar 

  • Du W, Brown JR, Sylvester DR, Huang J, Chalker AF, So CY, Holmes DJ, Payne DJ, Wallis NG (2000) Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in gram-positive bacteria. J Bacteriol 182:4146–4152

    PubMed  CAS  Google Scholar 

  • Eisen JA (1995) The RecA protein as a model molecule for molecular systematic studies of bacteria:comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123

    PubMed  CAS  Google Scholar 

  • Embley TM, Stackebrandt E (1994) The molecular phylogeny and systematics of the actinomycetes. Annu Rev Microbiol 48:257–289

    PubMed  CAS  Google Scholar 

  • Eschenburg S, Priestman M, Schonbrunn E (2005) Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J Biol Chem 280:3757–3763

    PubMed  CAS  Google Scholar 

  • Everett KD, Bush RM, Andersen AA (1999) Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49 (Pt 2):415–440

    PubMed  CAS  Google Scholar 

  • Fraser CM, Norris SJ, Weinstock CM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388

    PubMed  CAS  Google Scholar 

  • Gao B, Gupta RS (2005) Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 55:2401–2412

    PubMed  CAS  Google Scholar 

  • Gao B, Parmanathan R, Gupta RS (2006) Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie van Leeuwenhoek 3 May 2006, Epub

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    PubMed  CAS  Google Scholar 

  • Griffiths E, Gupta RS (2002) Protein signatures distinctive of chlamydial species:horizontal transfers of cell wall biosynthesis genes glmU from archaea to chlamydiae and murA between chlamydiae and Streptomyces. Microbiology-Sgm 148:2541–2549

    CAS  Google Scholar 

  • Griffiths E, Petrich AK, Gupta RS (2005) Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification. Microbiology-Sgm 151:2647–2657

    CAS  Google Scholar 

  • Gupta RS (1995) Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11

    PubMed  CAS  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    PubMed  CAS  Google Scholar 

  • Gupta RS (2000) The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402

    PubMed  CAS  Google Scholar 

  • Gupta RS (2001) The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4:187–202

    PubMed  CAS  Google Scholar 

  • Gupta RS (2004) The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit Rev Microbiol 30:123–143

    PubMed  CAS  Google Scholar 

  • Gupta RS, Griffiths E (2002) Critical issues in bacterial phylogeny. Theor Popul Biol 61:423–434

    PubMed  Google Scholar 

  • Horn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U, Fartmann B, Brandt P, Nyakatura GJ, Droege M, Frishman D, Rattei T, Mewes HW, Wagner M (2004) Illuminating the evolutionary history of chlamydiae. Science 304:728–730

    PubMed  CAS  Google Scholar 

  • Jain R, Rivera MC, Moore JE, Lake JA (2003) Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol 20:1598–1602

    PubMed  CAS  Google Scholar 

  • Kahane S, Everett KD, Kimmel N, Friedman MG (1999) Simkania negevensis strain ZT: growth, antigenic and genome characteristics. Int J Syst Bacteriol 49 (Pt 2):815–820

    PubMed  CAS  Google Scholar 

  • Kalayoglu MV, Byrne GI (2001) Chlamydia. In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd ed, release 37 (http://www.link. springer-ny.com/link/service/books/10125/). Springer-Verlag, New York

  • Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21:385–389

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes:quantification and classification. Annu Rev Microbiol 55:709–742

    PubMed  CAS  Google Scholar 

  • Li T, Graham DE, Stathopoulos C, Haney PJ, Kim HS, Vothknecht U, Kitabatake M, Hong KW, Eggertsson G, Curnow AW, Lin W, Celic I, Whitman W, Soll D (1999) Cysteinyl-tRNA formation: the last puzzle of aminoacyl-tRNA synthesis. FEBS Lett 462:302–306

    PubMed  CAS  Google Scholar 

  • Ludwig W, Klenk H-P (2001) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systamatics. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer-Verlag, Berlin, pp 49–65

    Google Scholar 

  • Mahony JB, Chong S, Coombes BK, Smieja M, Petrich A (2000) Analytical sensitivity, reproducibility of results, and clinical performance of five PCR assays for detecting Chlamydia pneumoniae DNA in peripheral blood mononuclear cells. J Clin Microbiol 38:2622–2627

    PubMed  CAS  Google Scholar 

  • Olsen GJ, Woese CR, Overbeek R (1994) The winds of (evolutionary) change:breathing new life into microbiology. J Bacteriol 176:1–6

    PubMed  CAS  Google Scholar 

  • Ortutay C, Gaspari Z, Toth G, Jager E, Vida G, Orosz L, Vellai T (2003) Speciation in Chlamydia: genomewide phylogenetic analyses identified a reliable set of acquired genes. J Mol Evol 57:672–680

    PubMed  CAS  Google Scholar 

  • Rao NA, Talwar R, Savithri HS (2000) Molecular organization, catalytic mechanism and function of serine hydroxymethyltransferase—a potential target for cancer chemotherapy. Int J Biochem Cell Biol 32:405–416

    PubMed  CAS  Google Scholar 

  • Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28:1397–1406

    PubMed  CAS  Google Scholar 

  • Read TD, Myers GS, Brunham RC, Nelson WC, Paulsen IT, Heidelberg J, Holtzapple E, Khouri H, Federova NB, Carty HA, Umayam LA, Haft DH, Peterson J, Beanan MJ, White O, Salzberg SL, Hsia RC, McClarty G, Rank RG, Bavoil PM, Fraser CM (2003) Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31:2134–2147

    PubMed  CAS  Google Scholar 

  • Rockey DD, Lenart J, Stephens RS (2000) Genome sequencing and our understanding of chlamydiae. Infect Immun 68:5473–5479

    PubMed  CAS  Google Scholar 

  • Royo J, Gimez E, Hueros G (2000) CMP-KDO synthetase:a plant gene borrowed from gram-negative eubacteria. Trends Genet 16:432–433

    PubMed  CAS  Google Scholar 

  • Rurangirwa FR, Dilbeck PM, Crawford TB, McGuire TC, McElwain TF (1999) Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales:proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov. Int J Syst Bacteriol 49 (Pt 2):577–581

    PubMed  CAS  Google Scholar 

  • Scarsdale JN, Radaev S, Kazanina G, Schirch V, Wright HT (2000) Crystal structure at 24 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate. J Mol Biol 296:155–168

    PubMed  CAS  Google Scholar 

  • Schmitz-Esser S, Linka N, Collingro A, Beier CL, Neuhaus HE, Wagner M, Horn M (2004) ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. J Bacteriol 186:683–691

    PubMed  CAS  Google Scholar 

  • Stackebrandt E, Rainey FA, WardRainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Google Scholar 

  • Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759

    PubMed  CAS  Google Scholar 

  • Syvanen M (1994) Horizontal gene transfer:evidence and possible consequences. Annu Rev Genet 28:237–261

    PubMed  CAS  Google Scholar 

  • Thomson NR, Yeats C, Bell K, Holden MT, Bentley SD, Livingstone M, Cerdeno-Tarraga AM, Harris B, Doggett J, Ormond D, Mungall K, Clarke K, Feltwell T, Hance Z, Sanders M, Quail MA, Price C, Barrell BG, Parkhill J, Longbottom D (2005) The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res 15:629–640

    PubMed  CAS  Google Scholar 

  • TIGR Microbial Database (2006) http://www.tigr.org/tdb/mdb/mdb.html

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows:a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Viale AM, Arakaki AK, Soncini FC, Ferreyra RG (1994) Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons. Int J Syst Bacteriol 44:527–533

    Article  PubMed  CAS  Google Scholar 

  • Weinstock GM, Hardham JM, McLeod MP, Sodergren EJ, Norris SJ (1998) The genome of Treponema pallidum: new light on the agent of syphilis. FEMS Microbiol Rev 22:323–332

    PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Wolf YI, Aravind L, Koonin EV (1999) Rickettsiae and Chlamydiae: evidence of horizontal gene transfer and gene exchange. Trends Genet 15:173–175

    PubMed  CAS  Google Scholar 

  • Zomorodipour A, Andersson SG (1999) Obligate intracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis. FEBS Lett 452:11–15

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Astrid Petrich for the generous gift of DNA from Simkania negevensis and Waddlia chondrophila. This work was supported by a grant from the Canadian Institute of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhey S. Gupta.

Additional information

[Reviewing Editor: Dr. Siv Andersson]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, E., Gupta, R.S. Lateral Transfers of Serine Hydroxymethyltransferase (glyA) and UDP-N-Acetylglucosamine Enolpyruvyl Transferase (murA) Genes from Free-living Actinobacteria to the Parasitic Chlamydiae. J Mol Evol 63, 283–296 (2006). https://doi.org/10.1007/s00239-005-0286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0286-x

Keywords

Navigation