Skip to main content
Log in

Evolution of Hyperactive, Repetitive Antifreeze Proteins in Beetles

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Some organisms that experience subzero temperatures, such as insects, fish, bacteria, and plants, synthesize antifreeze proteins (AFPs) that adsorb to surfaces of nascent ice crystals and inhibit their growth. Although some AFPs are globular and nonrepetitive, the majority are repetitive in both sequence and structure. In addition, they are frequently encoded by tandemly arrayed, multigene families. AFP isoforms from the mealworm beetle, Tenebrio molitor, are extremely potent and inhibit ice growth at temperatures below −5°C. They contain a 12-amino acid repeat with the sequence TCTxSxxCxxAx, each of which makes up one coil of the β-helix structure. TxT motifs are arrayed to form the ice-binding surface in all three known insect AFPs: the homologous AFPs from the two beetles, T. molitor and Dendroides canadensis, and the nonhomologous AFP from the spruce budworm, Choristoneura fumiferana. In this study, we have obtained the cDNA and genomic sequences of additional T. molitor isoforms. They show variation in the number of repeats (from 6 to 10) which can largely be explained by recombination at various TCT motifs. In addition, phylogenetic comparison of the AFPs from the two beetles suggests that gene loss and amplification may have occurred after the divergence of these species. In contrast to a previous study suggesting that T. molitor genes have undergone positive Darwinian selection (selection for heterogeneity), we propose that the higher than expected ratio of nonsynonymous-to-synonymous substitutions might result from selection for higher AT content in the third codon position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Andorfer CA, Duman JG (2000) Isolation and characterization of cDNA clones encoding antifreeze proteins of the pyrochroid beetle Dendroides Canadensis. J Insect Physiol 46:365–372

    Article  PubMed  CAS  Google Scholar 

  • Chao H, Hodges RS, Kay CM, Gauthier SY, Davies PL (1996) A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze. Protein Sci 5:1150–1156

    Article  PubMed  CAS  Google Scholar 

  • Das S, Paul S, Bag SK, Dutta C (2006) Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC Genomics 7:186

    Article  PubMed  CAS  Google Scholar 

  • Doucet D, Tyshenko MG, Kuiper MJ, Graether SP, Sykes BD, Daugulis AJ, Davies PL, Walker VK (2000) Structure-function relationships in spruce budworm antifreeze protein revealed by isoform diversity. Eur J Biochem 267:6082–6088

    Article  PubMed  CAS  Google Scholar 

  • Doucet D, Tyshenko MG, Davies PL, Walker VK (2002) A family of expressed antifreeze protein genes from the moth, Choristoneura fumiferana. Eur J Biochem 269:38–46

    Article  PubMed  CAS  Google Scholar 

  • Duman JG, Li N, Verleye D, Goetz FW, Wu DW, Andorfer CA, Benjamin T, Parmelee DC (1998) Molecular characterization and sequencing of antifreeze proteins from larvae of the beetle Dendroides canadensis. J Comp Physiol [B] 168:225–232

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  • Gō M (1981) Correlation of DNA exonic regions to protein structural units in haemoglobin. Nature 291:90–92

    Article  PubMed  Google Scholar 

  • Graether SP, Sykes BD (2004) Cold survival in freeze-intolerant insects: the structure and function of beta-helical antifreeze proteins. Eur J Biochem 271:3285–3296

    Article  PubMed  CAS  Google Scholar 

  • Graether SP, Kuiper MJ, Gagne SM, Walker VK, Jia Z, Sykes BD, Davies PL (2000) Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406:325–328

    Article  PubMed  CAS  Google Scholar 

  • Graham LA, Liou YC, Walker VK, Davies PL (1997) Hyperactive antifreeze protein from beetles. Nature 388:727–728

    Article  PubMed  CAS  Google Scholar 

  • Graham LA, Walker VK, Davies PL (2000) Developmental and environmental regulation of antifreeze proteins in the mealworm beetle Tenebrio molitor. Eur J Biochem 267:6452–6458

    Article  PubMed  CAS  Google Scholar 

  • Hayes PH, Scott GK, Ng NF, Hew CL, Davies PL (1989) Cystine-rich type II antifreeze protein precursor is initiated from the third AUG codon of its mRNA. J Biol Chem 264:18761–18767

    PubMed  CAS  Google Scholar 

  • Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665

    Article  PubMed  CAS  Google Scholar 

  • Hew CL, Wang NC, Joshi S, Fletcher GL, Scott GK, Hayes PH, Buettner B, Davies PL (1988) Multiple genes provide the basis for antifreeze protein diversity and dosage in the ocean pout, Macrozoarces americanus. J Biol Chem 263:12049–12055

    PubMed  CAS  Google Scholar 

  • Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27:101–106

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, DeVries AL (2006) Antifreeze glycoprotein levels in Antarctic notothenioid fishes inhabiting different thermal environments and the effect of warm acclimation. Comp Biochem Physiol B Biochem Mol Biol 144:290–300

    Article  PubMed  CAS  Google Scholar 

  • Johnston SL, Lee RE Jr. (1990) Regulation of supercooling and nucleation in a freeze intolerant beetle (Tenebrio molitor). Cryobiology 27:562–568

    Article  Google Scholar 

  • Jørgensen FG, Schierup MH, Clark AG (2007) Heterogeneity in regional GC content and differential usage of codons and amino acids in GC-poor and GC-rich regions of the genome of Apis mellifera. Mol Biol Evol 24:611–619

    Article  PubMed  CAS  Google Scholar 

  • Korber B (2000) HIV signature and sequence variation analysis. In: Rodrigo AG, Learn GH (eds) Computational analysis of HIV molecular sequences. Kluwer Academic, Dordrecht, Netherlands, pp 55–72

    Google Scholar 

  • Leinala EK, Davies PL, Jia Z. (2002a) Crystal structure of beta-helical antifreeze protein points to a general ice binding model. Structure (Cambr) 10:619–627

    Article  CAS  Google Scholar 

  • Leinala EK, Davies PL, Doucet D, Tyshenko MG, Walker VK, Jia Z (2002b) A beta-helical antifreeze protein isoform with increased activity. Structural and functional insights. J Biol Chem 277:33349–33352

    Article  CAS  Google Scholar 

  • Li N, Andorfer CA, Duman JG (1998) Enhancement of insect antifreeze protein activity by solutes of low molecular mass. J Exp Biol 201:2243–2251

    PubMed  CAS  Google Scholar 

  • Liou YC, Thibault P, Walker VK, Davies PL, Graham LA (1999) A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Biochemistry 38:11415–11424

    Article  PubMed  CAS  Google Scholar 

  • Liou YC, Tocilj A, Davies PL Jia Z (2000) Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature 406:322–324

    Article  PubMed  CAS  Google Scholar 

  • Logsdon JM Jr., Doolittle WF (1997) Origin of antifreeze protein genes: a cool tale in molecular evolution. Proc Natl Acad Sci USA 94:3485–3487

    Article  PubMed  CAS  Google Scholar 

  • Marshall CB, Daley ME, Graham LA, Sykes BD, Davies PL (2002) Identification of the ice-binding face of antifreeze protein from Tenebrio molitor. FEBS Lett 529:261–267

    Article  PubMed  CAS  Google Scholar 

  • Marshall CB, Daley ME, Sykes BD, Davies PL (2004) Enhancing the activity of a beta-helical antifreeze protein by the engineered addition of coils. Biochemistry 43:11637–11646

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonomous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Ramsey JA (1964) The rectal complex of the mealworm Tenebrio molitor, L. (Coleoptera, Tenebrionidae). Phil Trans R Soc Lond B 248:279–314

    Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 74:2589–2593

    Article  PubMed  CAS  Google Scholar 

  • Scott GK, Hew CL, Davies PL (1985) Antifreeze protein genes are tandemly linked and clustered in the genome of the winter flounder. Proc Natl Acad Sci USA 82:2613–2617

    Article  PubMed  CAS  Google Scholar 

  • Scott GK, Hayes PH, Fletcher GL, Davies PL (1988) Wolffish antifreeze protein genes are primarily organized as tandem repeats that each contain two genes in inverted orientation. Mol Cell Biol 8:3670–3675

    PubMed  CAS  Google Scholar 

  • Swanson WJ, Aquadro CF (2002) Positive Darwinian selection promotes heterogeneity among members of the antifreeze protein multigene family. J Mol Evol 54:403–410

    PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analyses using parsimony and other methods. Version 4.0b10. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Taylor MS, Ponting CP, Copley RR (2004) Occurrence and consequences of coding sequence insertions and deletions in Mammalian genomes. Genome Res 14:555–566

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tyshenko MG, Doucet D, Davies PL, Walker VK (1997) The antifreeze potential of the spruce budworm thermal hysteresis protein. Nat Biotechnol 15:887–890

    Article  PubMed  CAS  Google Scholar 

  • Walker VK, Kuiper MJ, Tyshenko MG, Doucet D, Graether SP, Liou YC, Sykes BD, Jia Z, Davies PL, Graham LA (2001) Surviving winter with antifreeze proteins: Studies on budworms and beetles. In: Denlinger DL, Giebultowiz J, Saunder DS (eds) Insect timing: circadian rhythmicity to seasonality. Elsevier Science, Amsterdam, pp 199–212

    Google Scholar 

Download references

Acknowledgments

CHIR and NSERC (Canada) are acknowledged for grants to P.L.D and V.K.W., respectively. The authors thank Dr. D. Forsdyke for comments on the manuscript. The comments made by the reviewers were invaluable and helped us to dramatically improve our analysis and interpretation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia K. Walker.

Additional information

[Reviewing Editor: Dr. John Oakeshott]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, L.A., Qin, W., Lougheed, S.C. et al. Evolution of Hyperactive, Repetitive Antifreeze Proteins in Beetles. J Mol Evol 64, 387–398 (2007). https://doi.org/10.1007/s00239-005-0256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0256-3

Keywords

Navigation