Skip to main content

Advertisement

Log in

Computational Prediction of Genomic Functional Cores Specific to Different Microbes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Computational and experimental attempts tried to characterize a universial core of genes representing the minimal set of functional needs for an organism. Based on the increasing number of available complete genomes, comparative genomics has concluded that the universal core contains < 50 genes. In contrast, experiments suggest a much larger set of essential genes (certainly more than several hundreds, even under the most restrictive hypotheses) that is dependent on the biological complexity and environmental specificity of the organism. Highly biased genes, which are generally also the most expressed in translationally biased organisms, tend to be over represented in the class of genes deemed to be essential for any given bacterial species. This association is far from perfect; nevertheless, it allows us to propose a new computational method to detect, to a certain extent, ubiquitous genes, nonorthologous genes, environment-specific genes, genes involved in the stress response, and genes with no identified function but highly likely to be essential for the cell. Most of these groups of genes cannot be identified with previously attempted computational and experimental approaches. The large variety of life-styles and the unusually detectable functional signals characterizing translationally biased organisms suggest using them as reference organisms to infer essentiality in other microbial species. The case of small parasitic genomes is discussed. Data issued by the analysis are compared with previous computational and experimental studies. Results are discussed both on methodological and biological grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA 93:10268–10273

    Article  PubMed  CAS  Google Scholar 

  • Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, et al. (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty DA, Merrick JM, et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL, Wolf YI, Koonin EV (2003) Comparative genomics of the archaea (euryarchaeota): Evolution of conserved protein families, the stable core, and the variable shell. Genome Res 9:608–628

    Google Scholar 

  • Nesbø CL, Boucher Y, Doolittle WF (2001) Defining the core of non-transferable prokaryotic genes: The euryarchaeal core. Mol Evol 53:340–350

    Article  Google Scholar 

  • Harris JK, Kelley JT, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13:407–412

    Article  PubMed  CAS  Google Scholar 

  • Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28:281–285

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2003) Comparative genomics, minimal gene sets and the last common ancestor. Nat Rev Microbiol 1:127–136

    Article  PubMed  CAS  Google Scholar 

  • Charlebois RL, Doolittle WF (2004) Computing prokaryotic gene ubiquity: Rescuing the core from extinction. Genome Res 14:2469–2477

    Article  PubMed  CAS  Google Scholar 

  • Itaya M (1995) An estimation of the minimal genome size required for life. FEBS Lett 362:257–260

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Ehrlich SD, Albertini A, Amati G, Anderson KK, Arnaud M, Asai K, Ashikage S, Aymerich S, Bessieres P, et al. (2003) Essential Bacillus subtilis genes. Proc Natl.Acad Sci USA 100:4678–4683

    Article  PubMed  CAS  Google Scholar 

  • Hutchison CA, Peterson Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169

    Article  PubMed  CAS  Google Scholar 

  • Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison III CA, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103:425–430

    Article  PubMed  CAS  Google Scholar 

  • Akerley BJ, Rubin EJ, Novick VL, Amaya K, Judson N, Mekalanos JJ (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci USA 99:966–971

    Article  PubMed  CAS  Google Scholar 

  • Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, et al. (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG 1655. J Bacteriol 185:5673–5684

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Ichimura J, Mizoguchi H, Tanaka K, Keyamura K, Ote T, Yamakava T, Yamazaki Y, Mori H, Katayama MS, Kato T (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55:137

    Article  PubMed  CAS  Google Scholar 

  • Salama NR, et al. (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186:7926–7935

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, et al. (2001) Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293:2266–2269

    Article  PubMed  CAS  Google Scholar 

  • Forsyth RA, et al. (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43: 1387–1400

    Article  PubMed  CAS  Google Scholar 

  • Thanassi JA, et al. (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30:3152–3162

    Article  PubMed  CAS  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke DJ, Bussey H, et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  PubMed  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, et al. (2005) Functional of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, et al. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  PubMed  CAS  Google Scholar 

  • Nishi K, Dabbs ER, Schnier J (1985) DNA sequence and complementation analysis of a mutation in the rplX gene from Escherichia coli leading to loss of ribosomal protein L24. J Bacteriol 163:890–894

    PubMed  CAS  Google Scholar 

  • Gerdes SY, Scholle MD, D’Souza M, Bernal MV, Baev A, Farrell M, Kurnasov OV, Daugherty MD, Mseeh F, Polanuger BM (2002) From genetic footprinting to Antimicrobial drug targets: Examples in cofactor biosynthetic pathways. J Bacteriol 184:4555–4572

    Article  PubMed  CAS  Google Scholar 

  • Grantham R, Gautier C, Gouy M, Mercier R, Pave A, (1980) Codon catalog usage and the genome hypothesis. Nucleic Acids Res 8:r49–r62

    PubMed  CAS  Google Scholar 

  • Sharp PM, Li W-H (1987) The codon adaptation index - a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acid Research, 15:1281–1295

    CAS  Google Scholar 

  • Carbone A, Zinovyev F, Képés F (2003) Codon Adaptation Index as a measure of dominating codon bias. Bioinformatics 19:2005–2015

    Article  PubMed  CAS  Google Scholar 

  • Carbone A, Madden R (2005) Insights on the evolution of metabolic networks of unicellular translationally biased organisms from transcriptomic data and sequence analysis. J Mol Evol 61:456–469

    Article  PubMed  CAS  Google Scholar 

  • Carbone A, Képés F, Zinovyev A (2004) Codon bias signatures, organisation of microorganisms in codon space and lifestyle. Mol Biol Evol 22:547–561

    Article  PubMed  Google Scholar 

  • Fang G, Rocha F, Danchin A (2005) How essential are nonessential genes? Mol Biol Evol 22:2147–2156

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Daubin V, Gouy M, Perriuere G (2002) A phylogenomic approach to bacterial phylogeny: Evidence of a core of genes sharing a common history. Genome Res 12:1080–1090

    Article  PubMed  CAS  Google Scholar 

  • Lerat E, Daubin V, Moran NA (2003) From gene trees to organismal phylogeny in prokaryotes: The case of the γ-proteobacteria. PLoS Biol 1:E19

    Article  PubMed  Google Scholar 

  • Kreil PD, Ouzounis CA (2001) Identification of thermophilic species by the amino-acids composition deduced from their genomes. Nucleic Acids Res 29:1608–1615

    Article  PubMed  CAS  Google Scholar 

  • Lynn DJ, Singer GA, Hickey DA (2002) Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res 30:4272–4277

    Article  PubMed  CAS  Google Scholar 

  • Tekaia F, Yeramian E, Dujon B (2002) Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: A global picture with correspondence analysis. Gene 297:51–60

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE (2005) Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 33:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Venter JC,Levy S, Stockwell T, Remington K, Halpern A (2003) A massive parallelism, randomness and genomic advances. Nature Genetics 33:219–227

    Article  PubMed  CAS  Google Scholar 

  • Zimmer C (2003) Genomics Tinker, tailor: Can Venter stitch together a genome from scratch? Science. 299:1006–1007

    Article  PubMed  CAS  Google Scholar 

  • Smith HO, Hutchison III CA, Pfannkoch C, Venter C (2003) Generating a synthetic genome by whole genome assembly: AX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA. 100:15440–15445

    Article  PubMed  CAS  Google Scholar 

  • Rocha EP, Matic I, Taddei F (2002) Over-representation of repeats in stress response genes: A strategy to increase versatility under stressful conditions? Nucleic Acids Res 30:1886–1894

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2000) How many genes can make a cell: The minimal-gene-set concept. Annu Rev Genomics Hum Genet 1:99–116

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, et al. (2002) The genome of M. acetivorans? reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  PubMed  CAS  Google Scholar 

  • Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O, Poch O, Prieur D, Querellou J, Ripp R, et al. (2003) An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 47:1495–1512

    Article  PubMed  CAS  Google Scholar 

  • Silva PJ, van den Ban EC, Wassink H, de Haaker HCB, Robb FT, Hagen WR (2000) Enzymes of hydrogen metabolism in Pyrococcus furiosus. Eur J Biochem 267:6541–6551

    Article  PubMed  CAS  Google Scholar 

  • Schut GJ, Zhou J, Adams MW (2001) DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: Evidence for a new type of sulfur-reducing enzyme complex. J Bacteriol 183:7027–7036

    Article  PubMed  CAS  Google Scholar 

  • Ward DE, Kengen SW, Van der Oost J, De Vos WM (2000) Purification and characterization of the alanine aminotransferase from the hyperthermophilic Archaeon Pyrococcus furiosus and its role in alanine production. J Bacteriol 182:2559–2566

    Article  PubMed  CAS  Google Scholar 

  • Ajdić D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, et al. (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci USA 99:14434–14439

    Article  PubMed  Google Scholar 

  • Illades-Aguiar B, Setlow P (1994) Studies of the processing of the protease which initiates degradation of small, acid-soluble proteins during germination of spores of Bacillus species. J Bacteriol 176:2788–2795

    PubMed  CAS  Google Scholar 

  • Gil R, Sabater-Muoz B, Latorre A, Silva FJ, Moya A (2002) Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life. Proc Natl Acad Sci USA 99:4454–4458

    Article  PubMed  CAS  Google Scholar 

  • Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature Genet 32:402–407

    Article  PubMed  CAS  Google Scholar 

  • van Ham RCHJ, Kamerbeek J, Palacios C, Rausell C, Abascal F,Bastolla U, Fernández JM, Jiménez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Morán F, Moya A (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100:581–586

    Article  PubMed  Google Scholar 

  • Zientz E, Dandekar T, Gross R (2004) Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 68:745–770

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Mushegian AR, Galperin MY, Walker DR (1997) Comparison of archaeal and bacterial genomes: Computer analysis of protein sequences predicts novel functions and suggests a chimeric origin of the archaea. Mol Microbiol 25:619–637

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank A. Zinovyev and C. Vaquero for insightful discussions and H. Isambert, A. Policriti, and L. Trojan for critical reading of the manuscript. This work was supported by a grant from the Fondation Pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Carbone.

Additional information

[Reviewing Editor: Martin Kreitman]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbone, A. Computational Prediction of Genomic Functional Cores Specific to Different Microbes. J Mol Evol 63, 733–746 (2006). https://doi.org/10.1007/s00239-005-0250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0250-9

Keywords

Navigation