Skip to main content
Log in

On the Paucity of Duplicated Genes in Caenorhabditis elegans Operons

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Spliced leader trans-splicing is an mRNA maturation process used by a small set of eukaryotes, including the nematode C. elegans, to cap the downstream genes of operons. We analyzed the frequency of duplication of operonic genes in C. elegans and confirmed that they are duplicated less often in the genome than monocistronic genes. Because operons account for about 15% of the genes in C. elegans, this lower duplication frequency might place a large constraint on the plasticity of the genome. Further analyses suggest that this paucity of duplicated genes results from operon organization hindering specific types of gene duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agabian N (1990) Trans splicing of nuclear pre-mRNAs. Cell 61:1157–1160

    Article  PubMed  CAS  Google Scholar 

  • Bi X, Liu LF (1996) DNA rearrangement mediated by inverted repeats. Proc Natl Acad Sci USA 93:819–823

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal T (1995) Trans-splicing and polycistronic transcription in Caenorhabditis elegans. Trends Genet 11:132–136

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal T, Gleason KS (2003) Caenorhabditis elegans operons: form and function. Nat Rev Genet 4:112–120

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal T, Evans D, Link CD, Guffanti A, Lawson D, Thierry-Mieg J, Thierry-Mieg D, Chiu WL, Duke K, Kiraly M, Kim SK (2002) A global analysis of Caenorhabditis elegans operons. Nature 417:851–854

    Article  PubMed  CAS  Google Scholar 

  • Cavalcanti AR, Ferreira R, Gu Z, Li WH (2003) Patterns of gene duplication in Saccharomyces cerevisiae and Caenorhabditis elegans. J Mol Evol 56:28–37

    Article  PubMed  CAS  Google Scholar 

  • Cohen A, Hassin D, Karby S, Lavi S (1994) Hairpin structures are the primary amplification products:a novel mechanism for generation of inverted repeats during gene amplification. Mol Cell Biol 14:7782–7791

    PubMed  CAS  Google Scholar 

  • Davis RE (1996) Spliced leader RNA trans-splicing in metazoa. Parasitol Today 12:33–40

    Article  PubMed  CAS  Google Scholar 

  • Ebel C, Frantz C, Paulus F, Imbault P (1999) Trans-splicing and cis-splicing in the colourless Euglenoid, Entosiphon sulcatum. Curr Genet 35:542–550

    Article  PubMed  CAS  Google Scholar 

  • Evans D, Zorio D, MacMorris M, Winter CE, Lea K, Blumenthal T (1997) Operons and SL2 trans-splicing exist in nematodes outside the genus Caenorhabditis. Proc Natl Acad Sci USA 94:9751–9756

    Article  PubMed  CAS  Google Scholar 

  • Frantz C, Ebel C, Paulus F, Imbault P (2000) Characterization of trans-splicing in euglenoids. Curr Genet 37:349–355

    Article  PubMed  CAS  Google Scholar 

  • Ganot P, Kallesoe T, Reinhardt R, Chourrout D, Thompson EM (2004) Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome. Mol Cell Biol 24:7795–7805

    Article  PubMed  CAS  Google Scholar 

  • Gordon AJ, Halliday JA (1995) Inversions with deletions and duplications. Genetics 140:411–414

    PubMed  CAS  Google Scholar 

  • Graur D, Li WH (2000) Fundamentals of molecular evolution. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Gu Z, Cavalcanti A, Chen FC, Bouman P, Li WH (2002) Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol 19:256–262

    PubMed  CAS  Google Scholar 

  • Harris TW, Chen N, Cunningham F, et al. (2004) WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res 32:D411–D417

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Kuersten S, Deshpande AM, Spieth J, MacMorris M, Blumenthal T (2001) Intercistronic region required for polycistronic pre-mRNA processing in Caenorhabditis elegans. Mol Cell Biol 21:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Lawrence J (1999) Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr Opin Genet Dev 9:642–648

    Article  PubMed  CAS  Google Scholar 

  • Lercher MJ, Blumenthal T, Hurst LD (2003) Coexpression of neighboring genes in Caenorhabditis elegans is mostly due to operons and duplicate genes. Genome Res 13:238–243

    Article  PubMed  CAS  Google Scholar 

  • Lin CT, Lin WH, Lyu YL, Whang-Peng J (2001) Inverted repeats as genetic elements for promoting DNA inverted duplication:implications in gene amplification. Nucleic Acids Res 29:3529–3538

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Katju V, Lynch M (2003) The structure and early evolution of recently arisen gene duplicates in the Caenorhabditis elegans genome. Genetics 165:1793–1803

    PubMed  CAS  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459

    Article  PubMed  CAS  Google Scholar 

  • Nilsen TW (1993) Trans-splicing of nematode premessenger RNA. Annu Rev Microbiol 47:413–440

    Article  PubMed  CAS  Google Scholar 

  • Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Rost B (1999) Twilight zone for protein sequences alignments. Protein Eng 12:85–94

    Article  PubMed  CAS  Google Scholar 

  • Stover NA, Steele RE (2001) Trans-spliced leader addition to mRNAs in a cnidarian. Proc Natl Acad Sci USA 98:5693–5698

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Vandenberghe AE, Meedel TH, Hastings KE (2001) mRNA 5′-leader trans-splicing in the chordates. Genes Dev 15:294–303

    Article  PubMed  CAS  Google Scholar 

  • Veitia RA (2004) Gene dosage balance in cellular pathways: implications for dominance and gene duplicability. Genetics 168:569–574

    Article  PubMed  Google Scholar 

  • Woollard A (2005) Gene duplications and genetic redundancy in C. elegans. In: The C. elegans Research Community (ed) WormBook. doi/10.1895/wormbook.1.2.1. Available at: http://www.wormbook.org

  • Yang Z (1997) PAML:a program package for phylogenetic analysis by maximum likelihood. CABIOS 13:555–556

    PubMed  CAS  Google Scholar 

  • Zorio DA, Cheng NN, Blumenthal T, Spieth J (1994) Operons as a common form of chromosomal organization in C elegans. Nature 372:270–272

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIGMS Grant GM59708 to L.F.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre R.O. Cavalcanti.

Additional information

[Reviewing Editor: Dr. Yves van de Peer]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalcanti, A.R., Stover, N.A. & Landweber, L.F. On the Paucity of Duplicated Genes in Caenorhabditis elegans Operons. J Mol Evol 62, 765–771 (2006). https://doi.org/10.1007/s00239-005-0203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0203-3

Keywords

Navigation