Skip to main content
Log in

The Discriminatory Transfer Routes of tRNA Genes Among Organellar and Nuclear Genomes in Flowering Plants: A Genome-Wide Investigation of indica Rice

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The transfer and integration of tRNA genes from organellar genomes to the nuclear genome and between organellar genomes occur extensively in flowering plants. The routes of the genetic materials flowing from one genome to another are biased, limited largely by compatibility of DNA replication and repair systems differing among the organelles and nucleus. After thoroughly surveying the tRNA gene transfer among organellar genomes and the nuclear genome of a domesticated rice (Oryza sativa L. ssp. indica), we found that (i) 15 mitochondrial tRNA genes originate from the plastid; (ii) 43 and 80 nuclear tRNA genes are mitochondrion-like and plastid-like, respectively; and (iii) 32 nuclear tRNA genes have both mitochondrial and plastid counterparts. Besides the native (or genuine) tRNA gene sets, the nuclear genome contains organelle-like tRNA genes that make up a complete set of tRNA species capable of transferring all amino acids. More than 97% of these organelle-like nuclear tRNA genes flank organelle-like sequences over 20 bp. Nearly 40% of them colocalize with two or more other organelle-like tRNA genes. Twelve of the 15 plastid-like mitochondrial tRNA genes possess 5′- and 3′-flanking sequences over 20 bp, and they are highly similar to their plastid counterparts. Phylogenetic analyses of the migrated tRNA genes and their original copies suggest that intergenomic tRNA gene transfer is an ongoing process with noticeable discriminatory routes among genomes in flowering plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Bensasson D, Zhang D, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321

    Article  PubMed  Google Scholar 

  • Blanchard JL, Schmidt GW (1996) Mitochondrial DNA migration events in yeast and humans: integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns. Mol Biol Evol 13:893

    PubMed  CAS  Google Scholar 

  • Ceci LR, Saiardi A, Siculella L, Quagliariello C (1993) A tRNA(Val) (GAC) gene of chloroplast origin in sunflower mitochondria is not transcribed. Plant Mol Biol 23:727–736

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci USA 101:17741–17746

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Weil JH, Marechal-Drouard L (1992) Nuclear-encoded transfer RNAs in plant mitochondria. Annu Rev Cell Biol 8:115–131

    Article  PubMed  CAS  Google Scholar 

  • Fey J, Dietrich A, Cosset A, Desprez T, Marechal-Drouard L (1997) Evolutionary aspects of “chloroplast-like” trnN and trnH expression in higher-plant mitochondria. Curr Genet 32:358–360

    Article  PubMed  CAS  Google Scholar 

  • Joyce PB, Gray MW (1989) Chloroplast-like transfer RNA genes expressed in wheat mitochondria. Nucleic Acids Res 17:5461–5476

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Marechal-Drouard L, Akama K, Small I (1996) Striking differences in mitochondrial tRNA import between different plant species. Mol Gen Genet 252:404–411

    Article  PubMed  CAS  Google Scholar 

  • Lopez JV, Yuhki N, Masuda R, Modi W, O’Brien SJ (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol 39:174–190

    PubMed  CAS  Google Scholar 

  • Marechal-Drouard L, Guillemaut P, Cosset A, Arbogast M, Weber F, Weil JH, Dietrich A (1990) Transfer RNAs of potato (Solanum tuberosum) mitochondria have different genetic origins. Nucleic Acids Res 18:3689–3696

    Article  PubMed  CAS  Google Scholar 

  • Marechal-Drouard L, Weil JH, Dietrich A (1993) Transfer RNAs and transfer RNA genes in plants. Annu Rev Plant Physiol Plant Mol Biol 44:13–32

    Article  CAS  Google Scholar 

  • Miyata S, Nakazono M, Hirai A (1998) Transcription of plastid-derived tRNA genes in rice mitochondria. Curr Genet 34:216–220

    Article  PubMed  CAS  Google Scholar 

  • Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473–481

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA 97:6960–6966

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004a) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    Article  CAS  Google Scholar 

  • Richly E, Leister D (2004b) NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Mol Biol Evol 21:1972–1980

    Article  CAS  Google Scholar 

  • Small I, Adams KL, Chapron A, Dietrich A, Duchene AM, Lancelin D, Marechal-Drouard L, Menand B, Mireau H, Moudden Y, Ovesna J, Peeters N, Sakamoto W, Souciet G, Wintz H (1999) The strange evolutionary history of plant mitochondiral tRNAs and their aminoacyl-tRNA synthetases. J Hered 90:333–337

    Article  CAS  Google Scholar 

  • Tang J, Xia H, Cao M, Zhang X, Zeng W, Hu S, Tong W, Wang J, Yu J, Yang H, Zhu L (2004) A comparison of rice chloroplast genomes. Plant Physiol 135:412–420

    Article  PubMed  CAS  Google Scholar 

  • Tian X, Zheng J, Hu S, Yu J (2006) The rice mitochondrial genomes and their variations. Plant Physiol 140:401–410

    Article  PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Veronico P, Gallerani R, Ceci LR (1996) Compilation and classification of higher plant mitochondrial tRNA genes. Nucleic Acids Res 24:2199–2203

    Article  PubMed  CAS  Google Scholar 

  • Woischnik M, Moraes CT (2002) Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res 12:885–893

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Xiao Y, Bu D, Tan J, Yang L, Ye C, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Huang X, Su Z, Tong W, Tong Z, Ye J, Wang L, Lei T, Chen C, Chen H, Huang H, Zhang F, Li N, Zhao C, Huang Y, Li L, Xi Y, Qi Q, Li W, Hu W, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wong GK, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Chinese Academy of Sciences (CAS; KSCX1-SW-03), the Ministry of Science and Technology (2004AA231050 and 2005AA235110), and the CAS Hundred Talents Program (to Jun Yu). We thank Dr. Xiyin Wang (Center of Bioinformatics, Peking University, China) for providing information on tRNA genes of the rice 93-11 nuclear genome, and we are grateful to Dr. Chunyuan Huang (School of Molecular and Biomedical Science, The University of Adelaide, Australia) and Dr. Jingui Zhu (Beijing Institute of Genomics, Chinese Academy of Sciences, China) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yu.

Additional information

Reviewing Editor: Dr. David Guttman

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, X., Zheng, J., Hu, S. et al. The Discriminatory Transfer Routes of tRNA Genes Among Organellar and Nuclear Genomes in Flowering Plants: A Genome-Wide Investigation of indica Rice. J Mol Evol 64, 299–307 (2007). https://doi.org/10.1007/s00239-005-0200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0200-6

Keywords

Navigation